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Abstract—We present an approach to laser-based people  Multi-hypothesis tracking (MHT) [12], [13] belongs to the
tracking using a multi-hypothesis tracker that detects and most general data association techniques as it produdss joi
tracks legs separately with Kalman filters, constant velody compatible assignments, integrates them over time, and is

motion models, and a multi-hypothesis data association sitegy. . . . . .
People are defined as high-level tracks consisting of two Isg able to deal with track creation, confirmation, occlusiamd a

that are found with little model knowledge. We extend the deletion. Other multi-target data association technicpueh
data association so that it explicitly handles track occluens in  as the nearest neighbor filter, the track splitting filtertros

addition to detections and deletions. Additionally, we adpt the  JPDAF are less powerful or sub-optimal in nature [14].

corresponding probabilities in a situation-dependent fakion so : . -
as to reflect the fact that legs frequently occlude each other In the context of people tracking with laser range finders,

Experimental results carried out with a mobile robot illustrate  1aylor &t al. [10] employ an MHT to resolve ambiguities
that our approach can robustly and efficiently track multiple in the problem of fitting a walking person into two leg

people even in situations of high levels of occlusion. measurements. The authors use a geometric occlusion model
to decrease the detection probability if an occlusion isd¢o b
. INTRODUCTION expected. Mucienteat al. [9] cluster people into groups and

L utilize an MHT to handle the assignments of measurements
People tracking is a key technology for robots that oper-_" " . .
) . to single tracks and clusters. Given the high-level concept
ate in populated environments. Knowledge about presence, o .
. . : of'groups, additional assignments of measurements todrack
position, and motion state of people will enable robots t0

better understand and anticipate their intentions andmreti within groups become possible for which the authors derive

Apart from human-robot interaction and cooperation Scea}pproprlate probabilities. - .
In this paper we track legs of people and utilize a multiple

narios, applications of laser-based people tracking delu hvbothesis tracki h for dat iation. O
also surveillance, crowd control, or pedestrian detection ypoInesis fracking approach for data association. mpqse
to most related work in the laser-based people tracking

intelligent cars. . .
9 literature, we address the problem of tracking legs that are

In this paper we cqn5|der the prqblem of people tr‘?‘Ckmgneasured individually. Based on the resulting leg tracles, w
from data acquired with two-dimensional laser range finders : L )
reate person tracks using the multivariate weighted mean

In most related work on laser-based people tracking [1ﬁ’ two tracks are sufficiently close and move in the same

(2], [3], [4], [3], [6], [7], [8], [9], a person is represerde . _ . .

as a single state that encodes torso position and velociti dslrecnon_for a certaln_ time frame. Once_a person track has

People are extracted from range data as single blobs A "‘?‘."Fjated over time, we adapt the individual occlusion

found by merging nearby point clusters that correspond t[r(;?1rob<';1bll|t|es of both associated leg tracks to account f(_)r

legs. However, the appearance of people in laser range datg . fa\;; tzstteLedgihzeunl-?'?tI?‘/ra?:]:gwgfk ?gctr;xoltir(]:(ietgl T(;atkf:s

depends on the mounting height of the sensor: at hip heig‘ﬁ ' ; . i P y tax

2 human torso is tvpically seen as a sinale local-minimuri© account potential occlusions by introducing adaptive
. ypically 9 . conditional assignment probabilities.

blob while at foot height, legs produce separate, fast-ngvi _ . .

smaller blobs. In practice, the mounting height of the senso The_ Paperis structure_d as follows. The next section brlefly

is often constrained by the application or the robot's fom(lzlescnbes_the Kalman f|_|ter-based_ tracker used_for degactl_n

factor and not only by the researcher to suit the needs Of?‘,ydkt_rackmg Iegi. Secthnllllltrr]eV|ews th? mutltl-hyg(u)itlgea

tracking algorithm. Safety regulations, for instance,uieg rac It?]g a}pproabc t,).?fpecga yt' N (la\>;p.retssaons 0 t?]a

laser scanners to be mounted at foot height. Obviouslyjsit tHWpO esis prcln( a "d'ehs' er:: lon f|n rod u_lc_:r(‘e_s N .ccpxncei

height, modeling people as single blobs can be problemaf?é person tracks and how they are found. This section also

and thus motivates leg tracking as an approach to lasectbad@"taIns the derivation of the_ probab|llty_e_>quat|0n_s tk_m_!t a
people tracking. Accordingly, the problem of people tragki needed to gdapt the Qcclu3|0n propabllltles of individual
has recently been addressed as a leg tracking problem [16]e}cks. Section V describes the experimental results.

[11] where people are represented by the states of two legs,

either in a single augmented state [11] or as a high-level Il. KF-BASED LEG TRACKER

track to which two low-level leg tracks are associated [10]. This section describes the KF-based multi-target tracker

that is used to track legs of people. We briefly go through the
All authors are with the University of Freiburg, Departmenf 9 peop v g

Computer Science, Georges-Koehler-Allee 79, 79110 FrgibGermany track!ng cycle. For the details of Kalman filtering anq tdrge
{arras,grzonka,luber,burggr@informatik.uni-freiburg.de tracking the reader is referred to Bar-Shalom and Li [14].



Sate prediction. A leg track is represented as = = | 5 | = | I | e
(z,y,vg,vy) Wherez andy are the track position and, 29 1] 0 0 ‘ 0 ‘
andv, the xz andy components of the track velocity. With Zger | 0 | 1 0 0
this state representation new tracks can be properlylingih TABLE |
with v, = v, = 0. For motion prediction, a constant velocity EXAMPLE OF AN ASSIGNMENT.

model is employed.
Measurement prediction. As thez- andy-coordinates of a hypothesis2; ) and the current measurement gives rise
track are directly observable, ti2ex 4 measurement matrix to Qk
H is formed by the2 x 2 identity matrix inz andy and the The assignment se¥ ;(k) associates each measurement
2 x 2 zero matrix inv, andv,. either to an existing track, a false alarm, or a new track
Observation. The observation step consists in detectinggnd marks a track adetected or deleted. Assignment sets
people in range data. The problem can be seen as a classifie best visualized in matrix form such as the example in
cation problem that consists in finding those laser beants thEable | that shows a set of assignments of tracksc, with
correspond to people and to discard other beams. Typicalijjeasurements; and zz. An assignment is denoted by a
hand designed classifiers have been employed for this tagRn-zero entry in the matrix. The example shows a situation
with a manual selection of features and thresholds. In antecén which trackx; is assigned to measuremesn, track x,
work we used AdaBoost, a supervised learning techniquis, scheduled for deletion, and measuremanis interpreted
to learn a classifier for groups of adjacent beams th&s a new track.
correspond to people [15]. AdaBoost takes a labeled trginin There are as many possible assignment detgk) as
set and a (possibly large) vocabulary of features that maye can distribute 1's and 0’'s over such matrices under the
or may not be appropriate for the given classification taskconstraints of unique measurement-to-track associatiads
The method then creates a classifier by selecting the mdbat the only zero-valued rows and columns can belong to the
informative features and finding the best thresholds (baseyentsdeletion, new track, andfalse alarm. An assignment
on the training set). The AdaBoost classifier proved to bget has a probability that is determined by the probatslitie
superior to a manually designed classifier. It shall thegefo of these events and the probability of a specific distriutio

be used also in this work. of 1's and O’s.

The observation step delivers the set of observations (or Given an aSS|gnment set probability and the probability of
measurements), = {z},27,...,z 4k} at time indexk. M, the parent hypothes@ ) we can calculate the probability
denotes the current number of measurements. of each child hypotheS|s that has been createll @5). This

Data association. For data association we employ a mod-calculation is done recursively [12]:
ified MHT approach described in the sections hereafter.

k k-1
Estimation. Given that both, the state and measuremerﬁ(QJ"Zk) - p(¥;(k), Qp(ﬂlzk)

prediction models are linear, a (non-extended) Kalmarr filte Bayest np(zk| 5 (k), Q8- Dp(W;(k)|QF L) -

as the optimal estimator under the Gaussian assumption can Markov ro) P 2()

be employed. P2 )- €y

The rightmost term on the right-hand side is the recursive
term, that is, the probability of its parent. Factgris a

In this section we review the MHT as described in the twdormalizer. The leftmost term on the right-hand side after
papers by Reid [12] and Caet al. [13]. In the original paper the normalizem is the measurement likelihood. We assume
by Reid [12] measurements can be interpreted as matcHat a measuremenf associated to a track; has a Gaussian
with existing tracks, new tracks, or false alarms. Tracks amdf centered around the measurement predlcilownh in-
interpreted agletected (when they match with a measure-novation covariance matri;”’, N (z) := N (2L ; 21, S}7).
ment) omot detected. Deletion of tracks is not handled by the We further assume the pdf of a measurement belonging to
MHT but by a heuristics based on sequences of consecutigenew track or false alarm being uniform in the observation
non-detections. Coxt al. [13] extend this framework with volumeV (the field of view of the sensor) with probability
the interpretation of tracks adeleted. Thereby, the MHT V~!. Thus
handles the entire life-cycle of tracks from creation and

I1l. MULTI HYPOTHESISTRACKER

k
confirmation (by matching) to deletion and occlusion (which  p(z | ¥, (k), Q’;(_j;) = HJ\/(Z;'C)&VP&
is non-detection and non-deletion).
In order to adapt the occlusion probabilities of individual My,
leg tracks later in this paper, it is necessary to reconsider = vV~ WNa+Nnew) HJ\/ 5 (2)
the derivation of the hypothesis probabilities in the MHT, i=1
especially the assignment set probabilities. with N, and N,.,, the number of measurements labeled as

Let Q% be thej-th hypothesis at time: and Qk(; the false alarms and new tracks respectivelyd; is an indicator
parent hypotheS|s from wh|cﬁ’C was derived. Let further variable being 1 if and only if measurementhas been
VU, (k) denote a set of aSS|gnments that, based on the parassociated to a track, O otherwise.



The central term on the right-hand side of Equation (1) is 4) Legs have a higher probability of occluding each other
the probability of an assignment sp(,\l/j(k)m’;(*j;), which than being occluded by other people’s legs or objects
is composed of three terms: In contrast to previous work [10], [11] we do not describe

1) The probability of thenumber of tracks Ng.;, Ny, P€ople by a more complex model that also encodes the

N,.., With a certain label. In Reid’s case, with tracksdynamics of a walking person. People have a large variety
being either labeledetected or not detected, the num- of leg motion patterns (such as random steps on the spot
ber of detected trackd/,.; given the total number of while they are waiting) that are not adequately captured by

tracks in the parent hypothesi®,, follows a binomial walking models typically found in the literature [10].

distribution To create a person track, we implement the above-
mentioned model as follows:
[ A Nt (N—=Naer) ; : ; ;
P(Naet|2)5)) = <N > Pacs' (1 = Pdet) 1) A person track is defined as a high-level track to which
det (3) two legs tracks are associated. The state of a person is
Assuming that theumber of false alarm and theum- estimated from the state of the two legs tracks using
ber of new tracks both follow a Poisson distribution the multivariate weighted mean. N
with expected number of evens,;V and A,V in 2) Two tracksx;,x; that satisfy a nearness condition
the observation volum& respective|y, we obtain given a threshold}d which in our case is set to 0.75
meter form a person candidate.
P(Naets Nyats Nuew| Qi )) = 3) A person candidate is validated if the two tracks max-
( N ) Nace (1 _ o YN =Naw) imize the scalar product of their orientations summed
Nu ) Pdet Pdet over the track historiesS = 7, < 6;, 0} > with
#(Nnew; Anew V) W(Nfat; Al V) — (4) 0; = atanZv? ;,v2 ;) being the orientation of track;.

In practice, we calculat& only in a sliding window
over the lastL steps and validate a person track
that satisfiesS > 6, wheref, is an experimentally
determined threshold.
4) The adaptation of the occlusion probability is described
in detail in the following subsection.
Person tracks are deleted if either the MHT deletes one or
( My, ) (Mk - Ndet) (M;C — Nget — Nfal) (5) both of its leg tracks or if condition 2) does not hold anymore
Naet Nial Niew for L consecutive steps.

whereu(n; A\V) is the Poisson distribution for events
when the average rate of eventsii.

2) The probability of a specific assignment of measure-
ments so thatM, = Nget + Npa + Nypew holds.
The probability is determined as 1 over the number
of combinations which is

where the last term equals 1. A Adaptation of occlusion probability
3) The probability of a specific assignment of tracks given According to Reid [12], who only considers the label

that a t.“’?‘c". can e|th_er uietected or not detected. The detected, the number of tracks with this labeN .., follows
prot_)ablhty is determined as 1 over the number of thess binomial distribution. In the more general case, in which
assignments we have an arbitrary number of labels, the number of tracks
N! N — Nget 6 with a given label follows anultinomial distribution.
(N = Nget)! ( Nger > ‘ (6) Besidesdetection (according to Reid [12]) andieletion
(introduced by Cox and Hingorani [13]) we introduce the

'Lhe first tekrm fogowshfrom th? combinat((j)riz;\ll fact, abel occlusion. Thus, the pdf of the labeling of the tracks
that a track can be chosen only once and the trac ito detected, occluded, and deleted is

to-measurement order matters.

It is noteworthy (and one of the key contributions of P(Naets Noces Naet| 5)) =
Reid [12]) that in the product of these three probabilities N! Nuet Nove N
many terms cancel out, and substituted into the Equatign (1) Nt N ol N gog 1 Vet Poce Paet 0
the final probabilityp(Ql’ﬂzk) becomes a simple and easy toyiip, Daet + Poce + Paer = 1 and N = Nyey + Noee + Naer.
calculate expression independent of the observation vlurgqyation (7) is the generalization of Equation (3) and adlow
V. to specifically adjust the label probabilities. Occlusi@rs
no longer implied by non-detection and non-deletion but are
made explicit as a label with their own specific probability.
The tracking system presented in the previous sectionspowever, adjusting individual probabilities raises thesu
maintains\V tracks that correspond to human legs. Only oRion whether probabilities of assignments and hypotheses r
the level of theseV tracks, we reason on the existence ofnain properly normalized across branches in the hypothesis

IV. PERSONTRACKING AND OCCLUSION ADAPTATION

people by the use of the following model knowledge: tree. We will now verify that the consistency in this sense is
1) People have always two legs maintained.
2) Legs are close to each other In our case, there are leg tracks that are associated to val-

3) Legs move in a similar direction idated person tracks and leg tracks that are either asedciat



to non-validated person tracks or to no person track at allvheren’ is a constant normalization factor.

We will denote the former aapproved (by the superscript  Substituting Equation (13) and the measurement likelihood
A) and the latter agree (by the superscripf). With N4 from Equation (2) into Equation (1) yields the final expres-
and NT" as the number of approved and the number of fresion for the probability of a child hypothesis

i A 7 o
tracks respectivelyN = N“ + N* and likewise My

NP = NE 4+ NE 4+NEF (8) p(%|z) = 0" TN (=)
=1
N = Niort Nowe + Ni © NENE N NE L NA NG
The evidencepproved and free conditions the probabilities det|F ]‘\’]CC‘F del| 7~ Fdet| A Focc|A  FdellA
in Equation (7) such that the right-hand side must be rewrit- Anew Nal' ~p(Q’;*1(j)). (14)

ten as the product of two multinomial distributions, eac
with three conditional probabiliti§S;c| 7, Pdei| s Poce|r @aNd
Pdet|As Pdel|As Pocc| A for WhiChpdet\F +pdel|F +pocc\F =1
and pgeia + Pdeija + Poccja = 1 must hold. The product
of multinomial distributions is explained by the fact that
track can only be either approved or free.

As a consequence, the three product terms that comp
the assignment set probability(\llj(k)m’;(*j;), are altered
as follows. The first term, the probability of theimber of
tracks with a certain label becomes

q—|ere n’ = n -7’ is a constant normalization factor which
ensures that the probabilities of the hypothe@(]issum up

to 1. It can be shown that” only depends on\,. This
Jmeans that within the same generation of hypotheses — for
which M), is identical — proper normalization across all
Ol%rgnches in the tree, that is across all hypothesis prabeil

IS guaranteed.

B. Branching and Pruning Strategies
For an efficient implementation of an MHT, pruning

P(Nets Noves Niets Naers Nower Niers Nnew, Nyat| 25 7) - strategies that limit the exponential explosion of hypete
N NP, NF NE, are mandatory. As proposed by Cox and Hingorani [13] we
NEINEINT  Paet|F " Poce|F " Pael|F make use of the following strategies:
N4 Nigw . Noe  Nig « k-Best Branching. Instead of creating all children, we
pdet\A pocc\A pdel|A

NATNAINATS .
det” " oce = dl generate only theé best children for each parent hy-

M(Nfal; )\falv) . ,U(Nnew; Anewvv) (10)

The second term, the probability of a specific combination
of these numbers, is calculated as 1 over the number of these

pothesis. This can be done in polynomial time with an
algorithm proposed by Murty [16].
Ratio Pruning. A lower limit on the ratio of the current

and the best hypothesis is defined. Unlikely hypotheses
being below this threshold are deleted.

N-scan-back. The N-scan-back algorithm considers an
ancestor hypothesis at timle— N and looks ahead in
time to all its children at the current time (the leaf
nodes). It evaluates the probabilities of all leaf nodes
to find and keep the best branch at titne- N and to
discard all others.

F A
Ndet - Ndet

combinations, which is
M, —
Nnew

My, M, — NF,
N, Nier
(Mk - Nget - N[?et - Nnew>
Nial
My!

T NI INA INpew!Nya! (1)
since My, = NE . + N4, + Nyew + Ny
Similarly, for the third term, the probability of the number 11,4 approach described above has been implemented

det det®
of track-to-measurement associations determined as 1 OVg{y evaluated on a an ActiveMedia Powerbot mobile robot
the number of these associations, is 1 over equipped with a Sick LMS laser scanner mounted at a height

V. EXPERIMENTS AND RESULTS

N NF-NEN (NF NI —NEF, of 11cm above ground. The angular resolution of the range
W ( NE, ) ( NE ) " scans V\{aSO.5°.. Throughout all experimgnts we uset_:i_ _the
NAI N4 N4, NA - N4 N4 yalues I|ste_d in TabI(_e Il for t_he condmona_l probabilities
(NAZNA ( NA ¢ ) ( Nj‘ ) introduced in the previous section. Our adaptive method use
df}g 'A oce del the probabilities with the superscriptfor free tracks and the
_ NTINA (12) probabilities with the superscripgt for approved tracks. We
NEINF NAINZ ! compare our method also to the non-adaptive case for which

When combining these results, many terms cancel out like ¥{€ use the probabilities with the superscriptas default
Reid’s approach [12]. Accordingly, we obtain the assignmeryalues unless otherwise noted.

set probability as A. Person walking on an 8-shaped trajectory

p(W;(k)Q5 ) = In the first experiment a person follows a 8-shaped tra-
;, NE NE NE, Na, NA N3, jectory in a corridor of about 2.5 meters width in normal

T Paet|p " PocelF " Pael|F " Paet|a " Poce|a " Pael|a” walking speed. As can be seen from Figure 1, our system

AN new ~)\%f;l - Y Nnewt Nyat (13) was able to reliably track the person despite the fact that it



Pdet|F | Pocc|F | Pdel|F | Pdet|A | Pocc|A | PdellA Anew Afal
0.3 0.63 0.07 0.2 0.79 0.01 | 0.001/0.003

TABLE Il
PARAMETERS USED THROUGHOUT THE EXPERIMENTS

Person |
: Person 2 s
" Person 3 s
only used a constant velocity motion model to track the sharp Person 4
turns carried out by the person. The same leg tracks last over
the entire duration of the experiment. This is illustrated b
the diagram in right image of Figure 1 that shows a constant §
number of four tracks. Two of the four tracks are due to ;
false alarms extracted in the clutter. Without adaptatibn o |/
the occlusion probability, there is track loss at nearlyrgve s Lo

U-turn giving rise to many newly created tracks.

Fig. 3. Trajectories of four people tracks during experimen

% non-adaptive . .
: £z adapive spot, cross paths, stop once in a while, and frequently enter
. g u : and leave the field of view. This leads up to four validated
5 10 people tracks simultaneously (eight leg tracks), not idetl
: § - s : false alarms due to, e.g., corners falsely detected as legs.
i - z 4 Figure 3 shows a portion of the experiment with four

] = 2 simultaneously tracked people. The chance of additional

i 0 200 400 600 800 1000
) iteration

mutual occlusions from people is substantial in this narrow
environment. Figure 4 depicts the total number of created
Fig. 1. Trajectories and total numbers of created tracksekperiment 1.  tracks. Due to long lasting occlusions produced by other
people, the system sometimes deletes tracks although the
B. Person turning constantly while moving forward person is sFiI! there, gnd creates new tracks when the person
KEjecomes visible again. However, Figure 4 shows that com-

In the second experiment a person is moving on a straig Lred to the non-adaptive case, we are able to track people

. ; o .
line tu_rnlng 180 ?‘“’“”d the staponary leg at each ste ore robustly over an extended period of time as the number
(see Figure 2). This unusual walking pattern produces hea\6¥

occlusions of the moving leg by the stationary one. Thfzr
adaptive approach was able to track the person accuratel

during the experiment. The total number of tracks in Figure aefault (and without adaptation), we observe in Figure 5

(right) is constant (thre_e), one of them being a false alarnareft) that the number of simultaneous tracks nearly never
The m”t”a' leg occlusion S pOOF'V handled by the non. ecreases, that is, tracks are deleted with a very low
gdaptlve_ approgch as the increasing number of new traCg?obability. When tracks are not deleted, their uncenjaint
in the diagram illustrates. grows boundless producing a high level of ambiguity, and
" ergo, a high number of matching candidates that pass the

tracks is substantially closer to ground truth. The gbun
uth information was obtained by manual inspection.
Mf we use the parameter setting for approved tracks as

g non-adaptive Mahalanobis test. This causes an explosion of branches in
: 5 16 adapive the hypothesis tree as illustrated in Figure 5 (right). The
. g , diagram shows the number of hypotheses between steps 900
2w and 1000, the time when all four people were in the field of
: : e ' view. In the adaptive case, the peak numbers of hypotheses
E ’ § N are seriously more moderate compared to the non-adaptive
§ T oo 1 approach where the parameters for approved tracks are taken
i j 0 200 reraton 400 600 as default_

_ o _ The average cycle time in this experiment with four people
Fig. 2. Trajectories and total numbers of created tracksekperiment 2.

70 "
non-adaptive
60 adaptive
ground-truth

C. People walking randomly in a narrow corridor

It remains to be demonstrated that the superior perfor-
mance of the adaptive approach found so far is not just due
to better tuned probability parameters for approved tracks 0
This is demonstrated in the third experiment where up to o b :
four people simultaneously move through the field of view 0 200 400 €0 Sh0 1000 1200 1400
of the sensor. The subjects perform typical motion patterrrsy. 4. Total number of created tracks for the adaptive nuthioe non-
at normal walking speed, they avoid each other, turn on trgaptive method, and the ground-truth.

50
40
30
20

total number of created tracks




9
'lé 14 non-adaptive, high occ. prob: 1800 non-adaptive, high occ. prob:
E] adaptive o adaptive
8 12 ground-truth 2 1500
o =
@ =]
c 10 g 1200
=] 8 £
£ 5 900
2 6 ]
] k)
600
5 4 ! 5§
E=] <
E 2l J 300
= |
0 0 =

940 960
iteration

0 200 400 600 800 1000 1200 1400 980 1000

iteration
Fig. 5. Number of tracks for the adaptive method, the norptia method
with parameters for approved tracks as default versus tengrtruth (left)
and number of simultaneous hypotheses for our adaptive aras¢he non-
adaptive method with parameters for approved tracks asildéfaght).

900 920

fixed occlusion probability settings, since it overly deday
track deletion and thus produces a high level of ambiguity
coupled with an explosion of the number of hypotheses. Our
current system is able to perform each update fast enough
for online processing on a state-of-the-art desktop coerput
even when the robot is tracking four people.

The occlusion model and the approach to extract people
tracks have performed well in all our experiments. Still,
they can both be replaced by more sophisticated models,
independent of the theoretical results presented in thpepa
Future work will aim at occlusion models for groups of
people and a more rigorous technique to create people tracks

}

O W I SIS

. ﬁérsonZ
Robot D —
: PersorT VN \v .

Fig. 6. Trajectories of robot and people in experiment 4.s&erl is
constantly tracked, person 2 receives a new identifier wkentering the
sensor’s field of view.

(1]

was 44.5ms on an Athlon 4400+ and with a scan-back depth
of eight (see section 1V-B). A significant acceleration fro [2]
initially 220ms) was due to the introduction of separate
d
trees for tracks and hypotheses as proposed by Cox an
Hingorani [13] that avoids processing duplicate tracks.

D. Tracking from a moving robot [4]

In the forth experiment the robot moves with an average
translational velocity of 0.33m/s (max. 0.5 m/s) while kac 5]
ing two people (Figure 6). The two subjects move at normaf
walking speeds, stop once in a while with person 2 leavin
and re-entering the robot’s field of view. Consecutive scan%ﬁ]
are aligned using odometry information. With a moving
sensor, detection of moving leg blobs is more difficult asl7]
also the background becomes dynamic. Especially in clutter
the AdaBoost classifier therefore generates a higher numbeg)
of false alarms. Because people tracks are initialized only
from leg tracks that satisfy our person model, the robot,
is able to robustly track the two people with only one
incorrect people track that appears for two iterations. The
non-adaptive approach creates additionally eleven iacorr 10
leg tracks resulting in a total of four incorrect people ksc

11
VI. CONCLUSIONS -

In this paper, we addressed the problem of people tracking
as a leg tracking problem utilizing an MHT for data associa-
tion. We extended the original MHT to incorporate adaptivé13
occlusion probabilities and present a mathematical digoiva
for this approach. The approach has been implemented and
tested on a real robot with data acquired by a SICK lasét¥
range sensor. The experimental results demonstrate that Qu)
approach is able to robustly track multiple people based on
observations of their legs even when enduring occlusioqfq
occur. We also carried out experiments that demonstrate tha
our adaptive approach outperforms a non-adaptive MHT with

from leg tracks.

VIlI. ACKNOWLEDGMENTS

This work was partly funded by the German Federal
Ministry of Education and Research (BMBF) under grant
01IMEO1F and by the European Comission under contract
numbers FP6-1ST-034120 and FP6-1ST-045388.

REFERENCES

B. Kluge, C. Kohler, and E. Prassler, “Fast and robuatking of
multiple moving objects with a laser range finder,” Pnoceedings of

the IEEE Int. Conf. on Robotics and Automation, 2001.

A. Fod, A. Howard, and M. Mataric, “Laser-based peoplking,” in

Proc. of the IEEE Int. Conference on Robotics and Automation, 2002.
M. Kleinhagenbrock, S. Lang, J. Fritsch, F. Lomker, Gnks and
G. Sagerer, “Person tracking with a mobile robot based ortimadal

anchoring,” in |EEE International Workshop on Robot and Human

Interactive Communication (ROMAN), Berlin, Germany, 2002.

D. Schulz, W. Burgard, D. Fox, and A. Cremers, “Peoplekiag with

a mobile robot using sample-based joint probabilistic dasociation
filters,” International Journal of Robotics Research (IJRR), vol. 22,

no. 2, pp. 99-116, 2003.

E. Topp and H. Christensen, “Tracking for following anasging
persons,” inlEEE/RSJ International Conference on Intelligent Robots

and Systems, Alberta, Canada, 2005.

J. Cui, H. Zha, H. Zhao, and R. Shibasaki, “Tracking npkipeople
using laser and vision,” ifEEE/RSJ International Conference on

Intelligent Robots and Systems, Alberta, Canada, 2005.

W. Zajdel, Z. Zivkovic, and B. Krose, “Keeping track ofumans:
Have | seen this person before?” iREE International Conference

on Robotics and Automation, Barcelona, Spain, 2005.

D. Schulz, “A probabilistic exemplar approach to combilaser and
vision for person tracking,” irProc. Robotics: Science and Systems,

Philadelphia, USA, August 2006.

] M. Mucientes and W. Burgard, “Multiple hypothesis traud of clus-

ters of people,” inlEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing, China, 2006.

] G. Taylor and L. Kleeman, “A multiple hypothesis walgirperson

tracker with switched dynamic model,” iRroc. of the Australasian

Conference on Robotics and Automation, Canberra, Australia, 2004.
J. Cui, H. Zha, H. Zhao, and R. Shibasaki, “Laser-basgdracting
people tracking using multi-level observations,” IEEE/RS] Int.

Conference on Intelligent Robots and Systems, Beijing, China, 2006.
D. Reid, “An algorithm for tracking multiple targetslEEE Transac-

tions on Automatic Control, vol. 24, pp. 843-854, Dec 1979.

] 1. J. Cox and S. L. Hingorani, “An efficient implementati of Reid’s

multiple hypothesis tracking algorithm and its evaluatitor the
purpose of visual tracking,JEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 18, no. 2, pp. 138-150, 1996.
Y. Bar-Shalom and X.-R. LiMultitarget-Multisensor Tracking: Prin-
ciples and Techniques.  Storrs, USA: YBS Publishing, 1995.

K. O. Arras,Oscar Martinez Mozos, and W. Burgard, “Using boosted

features for the detection of people in 2d range dataPrioc. of the
|EEE Int. Conference on Robotics and Automation, Rome, Italy, 2007.
K. G. Murty, “An algorithm for ranking all the assignmisnin order
of increasing cost,Operations Research, vol. 16, pp. 682—-687, 1968.



