
Efficient Estimation of Accurate Maximum Likelihood Maps in 3D

Giorgio Grisetti Slawomir Grzonka Cyrill Stachniss Patrick Pfaff Wolfram Burgard

Abstract— Learning maps is one of the fundamental tasks
of mobile robots. In the past, numerous efficient approaches
to map learning have been proposed. Most of them, however,
assume that the robot lives on a plane. In this paper, we
consider the problem of learning maps with mobile robots
that operate in non-flat environments and apply maximum
likelihood techniques to solve the graph-based SLAM problem.
Due to the non-commutativity of the rotational angles in 3D,
major problems arise when applying approaches designed for
the two-dimensional world. The non-commutativity introduces
serious difficulties when distributing a rotational error over a
sequence of poses. In this paper, we present an efficient solution
to the SLAM problem that is able to distribute a rotational error
over a sequence of nodes. Our approach applies a variant of
gradient descent to solve the error minimization problem. We
implemented our technique and tested it on large simulated and
real world datasets. We furthermore compared our approach to
solving the problem by LU-decomposition. As the experiments
illustrate, our technique converges significantly faster to an
accurate map with low error and is able to correct maps with
bigger noise than existing methods.

I. INTRODUCTION

Learning maps has been a major research focus in

the robotics community over the last decades and is of-

ten referred to as the simultaneous localization and map-

ping (SLAM) problem. In the literature, a large variety

of solutions to this problem can be found. In this paper,

we consider the popular and so-called “graph-based” or

“network-based” formulation of the SLAM problem in which

the poses of the robot are modeled by nodes in a graph.

Constraints between poses resulting from observations or

from odometry are encoded in the edges between the nodes.

The goal of algorithms to solve this problem is to find a

configuration of the nodes that maximizes the observation

likelihood encoded in the constraints.

In the past, this concept has been successfully applied [3],

[4], [7], [8], [9], [10], [12], [13], [15]. Such solutions apply

an iterative error minimization techniques. They correct

either all poses simultaneously [7], [9], [10], [15] or perform

local updates [3], [4], [8], [13]. Most approaches have been

designed for the two-dimensional space where the robot is

assumed to operate on a plane [3], [4], [7], [10], [13]. Among

all these approaches, multi-level relaxation [4] or Olson’s

algorithm [13] belong to the most efficient ones.

In the three-dimensional space, however, distributing an

error between different nodes of a network is not straight-

forward. One reason for that is the non-commutativity of

the three rotational angles. As a result, most approaches

that provide good results in 2D are not directly applicable

All authors are members of the University of Freiburg, Department of
Computer Science, 79110 Freiburg, Germany

Fig. 1. A simulated trajectory of a robot moving on the surface of a sphere.
The left image shows an uncorrected trajectory and the right image depicts
the corrected one (approx. 8,600 constraints, 100 iterations, 21s).

in 3D. One way is to ignore the non-commutativity of the

rotational angles. In this case, however, the algorithm works

only in case of small noise and in small environments. A

few maximum likelihood mapping techniques have been

proposed for the three-dimensional space [9], [12], [15].

Some approaches ignore the error in pitch and roll [9]

whereas others detect loops and divide the error by the

number of poses along the loop (weighted with path length,

as in [12]). An alternative solution is to apply variants of

the approach of Lu and Milios [10] and to correct the whole

network at once [15].

The contribution of this paper is a technique to efficiently

distribute the error over a sequence of nodes in all six

dimensions (x, y, z, and the three rotational angles φ, θ,

ψ). This enables us to apply a variant of gradient descent

in order to reduce the error in the network. As a result,

our approach converges by orders of magnitudes faster than

the approaches mentioned above to low error configurations.

As a motivating example, consider Figure 1. It depicts a

trajectory of a simulated robot moving on the surface of a

sphere. The left image depicts the input data and the right

one the result of the technique presented in this paper.

The remainder of this paper is organized as follows. After

discussing related work, we explain in Section III the graph-

based formulation of the mapping problem as well as the

key ideas of gradient descent in Section IV. Section V

explains why the standard 2D approach cannot be used in

3D and introduces our technique to correct the poses given a

network of constraints. Section VI analyzes the complexity

of our approach. We finally present our experimental results

in Section VII.

II. RELATED WORK

A popular approach to find maximum likelihood (ML)

maps is to apply least square error minimization techniques

based on a network of relations. In this paper, we also



follow this way of describing the SLAM problem. Lu and

Milios [10] first applied this approach in robotics to address

the SLAM problem using a kind of brute force method.

Their approach seeks to optimize the whole network at once.

Gutmann and Konolige [7] proposed an effective way for

constructing such a network and for detecting loop closures

while running an incremental estimation algorithm. Howard

et al. [8] apply relaxation to localize the robot and to build

a map. Duckett et al. [3] propose the usage of Gauss-Seidel

relaxation to minimize the error in the network of constraints.

In order to make the problem linear, they assume knowledge

about the orientation of the robot. Frese et al. [4] propose

a variant called multi-level relaxation (MLR). It applies

relaxation based on different resolutions. Recently, Olson

et al. [13] presented a novel method for correction two-

dimensional networks using (stochastic) gradient descent.

Olson’s algorithm and MLR are currently the most efficient

techniques available in 2D. All techniques discussed so far

have been presented as solutions to the SLAM problem in

the two-dimensional space. As we will illustrate in this paper,

they typically fail to correct a network in 3D.

Dellaert proposed a smoothing method called square root

smoothing and mapping [2]. It applies smoothing to correct

the poses of the robot and feature locations. It is one of

the few techniques that can be applied in 2D as well as

in 3D. A technique that combines 2D pose estimates with

3D data has been proposed by Howard et al. [9] to build

maps of urban environments. They avoid the problem of

distributing the error in all three dimensions by correcting

only the orientation in the x, y-plane of the vehicle. The roll

and pitch is assumed to be measured accurately enough using

an IMU.

In the context of three-dimensional maximum likelihood

mapping, only a few approaches have been presented so

far [11], [12], [15]. The approach of Nüchter et al. [12] de-

scribes a mobile robot that builds accurate three-dimensional

models. In their approach, loop closing is achieved by

uniformly distributing the error resulting from odometry

over the poses in a loop. This technique provides good

estimates but typically requires a small error in the roll and

pitch estimate. Newman et al. [11] presented a sophisticated

approach for detecting loop closures using laser and vision.

Such an approach can be used to find the constraints which

are the input to our algorithm.

Recently, Triebel et al. [15] described an approach that

aims to globally correct the poses given the network of

constraints in all three dimensions. At each iteration the

problem is linearized and solved using LU decomposition.

This yields accurate results for small and medium size net-

works especially when the error in the rotational component

is small. We use this approach as a benchmark for our

technique presented in this paper.

The contribution of this paper is a highly efficient tech-

nique to compute maximum likelihood maps in 3D. We

present a way of distributing an error in all three rotational

angles that accounts for the non-commutativity of these

angles. This technique in combination with a variant of

gradient descent allows us to correct larger networks than

most state-of-the-art approaches.

III. ON GRAPH-BASED SLAM

The goal of graph-based maximum-likelihood mapping

algorithms is to find the configuration of nodes that max-

imizes the likelihood of the observations. For a more precise

formulation consider the following definitions:

• x is a vector of parameters (x1 · · · xn)T which

describes a configuration of the nodes.

• δji represents a constraint between the nodes i and j
based on measurements. These constraints are the edges

in the graph structure.

• Ωji is the information matrix capturing the uncertainty

of δji.

• fji(x) is a function that computes a zero noise obser-

vation according to the current configuration of nodes.

It returns an observation of node j from node i.

Given a constraint between node i and node j, we can

define the error eji introduced by the constraint and residual

rji as

eji(x) = fji(x)− δji = −rji(x). (1)

At the equilibrium point, eji is equal to 0 since fji(x) = δji.

In this case, an observation perfectly matches the current

configuration of the nodes. Assuming a Gaussian observation

error, the negative log likelihood of an observation fji is

Fji(x) =
1

2
(fji(x)− δji)

T
Ωji (fji(x)− δji) (2)

∝ rji(x)T Ωjirji(x). (3)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
1

2

∑

<j,i>∈C

rji(x)T Ωjirji(x) (4)

Here C = {< j1, i1 >, . . . , < jM , iM >} is set of pairs of

indices for which a constraint δjmim
exists.

A maximum likelihood map learning approach seeks to

find the configuration x
∗ of the nodes that maximizes the

likelihood of the observations which is equivalent to mini-

mizing the negative log likelihood written as

x
∗ = argmin

x

F (x). (5)

IV. GRADIENT DESCENT

FOR MAXIMUM LIKELIHOOD MAPPING

Gradient descent (GD) is an iterative technique to find the

minimum of a function. Olson et al. [13] were the first who

applied it in the context of the SLAM problem in the two-

dimensional space. GD seeks for a solution of Eq. (5) by

iteratively selecting a constraint < j, i > and by moving a

set of nodes of the network in order to decrease the error

introduced by the selected constraint. The nodes are updated

according to the following equation:

x
t+1 = x

t + λ · JT
jiΩjirji

︸ ︷︷ ︸

∆x

(6)



Here x is the set of variables describing the locations of

the poses in the network. Jji is the Jacobian of fji, Ωji

is the information matrix capturing the uncertainty of the

observation, and rji is the residual.

Reading the term ∆x of Eq. (6) from right to left gives

an intuition about the iterative procedure used in GD:

• rji is the residual which is the opposite of the error vec-

tor. Changing the network configuration in the direction

of the residual rji will decrease the error eji.

• Ωji represents the information matrix of a constraint.

Multiplying it with rji scales the residual components

according to the information encoded in the constraint.

• JT
ji: The role of the Jacobian is to map the residual term

into a set of variations in the parameter space.

• λ is the learning rate which decreases with the iteration

of GD and which makes the system to converge to an

equilibrium point.

In practice, GD decomposes the overall problem into many

smaller problems by optimizing the constraints individually.

The difference between GD and stochastic GD is that the

stochastic variant selects the constraints in a random order.

Obviously, updating the different constraints one after each

other can have opposite effects on a subset of variables. To

avoid infinitive oscillations, one uses the learning rate to

reduce the fraction of the residual which is used for updating

the variables. This makes the solutions of the different sub-

problems to asymptotically converge towards an equilibrium

point that is the solution found by the algorithm. This

equilibrium point is then reported as the maximum liklihood

solution to the mapping problem.

V. 3D GRAPH OPTIMIZATION

The graph-based formulation of the SLAM problem does

not specify how the poses are presented in the nodes of the

graph. In theory, one can choose an arbitrary parameteriza-

tion. Our algorithm uses a tree based parameterization for

describing the configuration of the nodes in the graph. To

obtain such a tree from an arbitrary graph, one can compute

a spanning tree. The root of the spanning tree is the node

at the origin p0. Another possibility is to construct a graph

based on the trajectory of the robot in case this is available.

In this setting, we build our parameterization tree as follows:

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly.

2) The first node is the root of the tree.

3) As the parent of a node, we choose the node with the

smallest id for which a constraint to the current node

exists.

This tree can be easily constructed on the fly.

In the following, we describe how to use this tree to define

the parameterization of the nodes in the network. Each node

i in the tree is related to a pose pi in the network and

maintains a parameter xi which is a 6D vector that describes

its configuration. Note that the parameter xi can be different

from the pose pi. In our approach, the parameter xi is chosen

as the relative movement from the parent of the node i in

Fig. 2. A simple example that illustrates the problem of distributing the
error in 3D. The left image shows the input data which was obtained by
moving a simulated robot over a hexagon twice with small Gaussian noise.
The middle image show the result obtained if the non-commutativity of the
rotation angles is ignored. The right images shows the result of our approach
which is very close to the ground truth.

the tree to the node i itself

xi = pi ⊖ pparent(i), (7)

with x0 = p0. The operator ⊖ is the motion decomposition

operator in 3D which is analogous to the one defined in

2D (see Lu and Milios [10]). A detailed discussion on tree

parameterizations in combination with GD is out of the scope

of this document and we refer the reader to [6].

Before presenting our approach for correcting the poses in

a network, we want to illustrate the problem of distributing

an error over a sequence of nodes. Consider that we need

to distribute an error e over a sequence of n nodes. In the

two-dimensional space, this can be done in a straightforward

manner as follows. Given the residual r2D = (rx, ry, rθ), we

can simply change the pose of the i-th node in the chain by

i/n times r2D. This error propagation works well in 2D and

is performed in most maximum-likelihood methods in the

2D space. In the three-dimensional space, however, such a

technique is not applicable (with exception of very small

errors). The reason for that is the non-commutativity of the

three rotations

R(φ, θ, ψ) 6=

n∏

1

R(
φ

n
,
θ

n
,
ψ

n
), (8)

where R(φ, θ, ψ) is the three-dimensional rotation matrix. As

illustrated in Figure 2, applying such an error propagation

leads to divergence even for small and simple problems.

Therefore, one has to find a different way of distributing

the error over a chain of poses which is described in the

following.

A. The Error Introduced by a Constraint

Let Pi be the homogenous transformation matrix corre-

sponding to the pose pi of the node i and Xi the transfor-

mation matrix corresponding to the parameter xi. Let Pi,0

be the ordered list of nodes describing a path in the tree from

the root (here referred to as node 0) to the node i. We can

express the pose of a node as

Pi =
∏

k∈Pi,0

Xk. (9)

The homogenous transformation matrix Xi consists of a

rotational matrix R and a translational component t. It has



the following form

Xi =

(
Rk tk
0 1

)

with X−1
i =

(
RT

k −RT
k tk

0 1

)

(10)

In order to compute the transformation between two

nodes i and j, one needs to consider the path Pji from node i
to node j. Since the nodes are arranged in a tree, this path

consists of an ascending part and a descending part. Let Pa
ji

be the ascending part of the path starting from node i and

Pd
ji the descending part to node j. We can then compute the

error eji in the reference frame of pi as

eji = (pj ⊖ pi)⊖ δji. (11)

Using the matrix notation, the error is

Eji = ∆−1
ji P

−1
i Pj (12)

= ∆−1
ji

∏

kd∈Pd
ji

X−1
kd ·

∏

ka∈Pa
ji

Xka , (13)

where ∆ji is the matrix corresponding to δji.

So far, we described the prerequisites for applying GD to

correct the poses of a network. The goal of the update rule

in GD is to iteratively update the configuration of a set of

nodes in order to reduce the error introduced by a constraint.

In Eq. (6), the term JT
jiΩji maps the variation of the error

to a variation in the parameter space. This mapping is a

linear function. As a result, the error might increase when

applying GD in case of non-linear error surfaces. In the three-

dimensional space, the rotational components often lead to

highly non-linear error surfaces. Therefore, GD as well as

similar minimization techniques cannot be applied directly

to large mapping problems.

In our approach, we therefore chose a slightly different

update rule. To overcome the problem explained above,

we allow the usage of non-linear functions to describe

the variation. The goal of this function is to compute a

transformation of the nodes along the path in the tree so

that the error introduced by the corresponding constraint is

reduced. In detail, we design this function in a way so that it

computes a new configuration of the variables xk ∈ Pji so

that it corrects only a fraction λ of the error, where λ is the

learning rate. In our experiments, we observed that such an

update typically leads to a smooth deformation of the nodes

along the path when reducing the error. In our approach,

this deformation is done in two steps. First, we update the

rotational components Rk of the variables xk and second,

we update the translational components tk.

B. Update of the Rotational Component

This section explains how to deform a path in order to

reduce the error introduced by a constraint. Without loss

of generality, we consider the origin of the path pi to be

in the origin of our reference system. The orientation of

pj (in the reference frame of pi) can be computed by

multiplying the rotational matrices along the path Pji. To

increase the readability of the document, we refer to the

rotational matrices along the path as Rk neglecting the

indices (compare Eq. (13)). The orientation of pj is described

by

R1R2 . . .Rn = R1:n, (14)

where n is the length of the path Pji.

Distributing a given error over a sequence of 3D rotations,

can be described in the following way: we need to determine

a set of increments in the intermediate rotations of the chain

so that the orientation of the last node (here node j) isR1:nB
where B the matrix that rotates xj to the desired orientation

based on the error. Formulated in a mathematical way, we

need to compute a set of rotations Ak so that

R1:nB =

n∏

k=1

RkAk. (15)

Once the matrices Ak are known, the new rotational matrices

of the parameters xk are updated by

Rk ← RkAk. (16)

We can decompose the matrix B into a set of incremental

rotations B = B1:n. In our current implementation, we com-

pute the individual matrices Bk by using the spherical linear

interpolation (slerp) [1]. We can decompose B using the slerp

function with a parameter u ∈ [0, 1] with slerp(B, 0) = I
and slerp(B, 1) = B. According to this framework, we can

compute the rotation Bk as

Bk = [slerp(B, uk−1)]
T

slerp(B, uk). (17)

To determine the values uk−1 and uk, we consider the

eigenvalues of the covariances of the constraints connecting

the nodes k−1 and k. This is an approximation which works

well in case of roughly spherical covariances. Note that the

eigenvalues need to be computed only once in the beginning

and are then stored in the tree.

Using this decomposition of B leads to Eq. (15) in which

B is replaced by B1:n. This equation admits an infinitive

number of solutions. However, we are only interested in

solutions which can be combined incrementally. Informally

speaking, this means when truncating the path from n to n−1
nodes, the solution of the truncated path should be part of

the solution of the full path. Formally, we can express this

property by the following system of equations:

∀n
k=1 : R1A1 . . . RkAk = R1:kB1:k (18)

Given this set of equations, the solution for the matrices Ak

can be computed as

Ak = RT
k (B1:k−1)

TRkB1:k. (19)

This is an exact solution that is always defined since Ak,

Rk, and Bk are rotation matrices. The proof of Eq. (19) is

given in the Section IX at the end of this document. Based

on Eq. (16) and Eq. (19), we have a closed form solution for

updating the rotational matrices of the parameters xk along

the path Pji from the node i to the node j.
Note that we also use the slerp function to compute the

fraction of the rotational component of the residual that is

introduced by λ (see Section V-A).



For simplicity of presentation, we showed how to dis-

tribute the rotational error while keeping the node i fixed.

In our implementation, however, we fix the position of the

so-called “top node” in the path which is the node that is

closest to the root of the tree (smallest level in the tree). As

a result, the update of a constraint has less side-effects on

other constraints in the network. Fixing the top node instead

of node i can be obtained by simply saving the pose of the

top node before updating the path. After the update, one

transforms all nodes along path in way that the top node

maintains its previous pose. Furthermore, we used the matrix

notation in this paper to formulate the error distribution since

it provides a clearer formulation of the problem. In our im-

plementation, however, we use quaternions for representing

rotations because they are numerically more stable. In theory,

however, both formulations are equivalent. An open source

implementation is available [5].

C. Update of the Translational Component

Compared to the update of the rotational component

described above, the update of the translational component

can be done in a straightforward manner. In our mapping

system, we distribute the translational error over the nodes

along the path without changing the previously computed

rotational component.

We distribute the translational error by linearly moving

the individual nodes along the path by a fraction of the

error. This fraction depends in the uncertainty of the indi-

vidual constraints encoded in the corresponding covariance

matrices. Equivalent to the case when updating the rotational

component, these fractions is also scaled with the learning

rate.

VI. COMPUTATIONAL COMPLEXITY

A single iteration of our algorithm requires to distribute

the error introduced by the individual constraints over a set

of nodes. Therefore, the complexity is proportional to the

number of constraints times the number of operations needed

to distribute the error of a single constraint.

In the remainder of this section, we analyze the number

of operations needed to distribute the error of a single

constraint. Once the poses of the nodes involved in an update

step are known, the operations described in Section V-B

and V-C can be carried out in a time proportional to the

number of nodes |P| along the path P . Computing the poses

of the nodes along a path requires to traverse the tree up

to the root according to Eq. (9). A naive implementation

requires repeated traversals of the tree up to the root. This,

however, can be avoided by choosing an intelligent order in

which to process the constraints.

Let the “top node” of a path be the node with the smallest

level in the tree. In our current implementation, we sort the

constraints according to level of the corresponding top node.

This can be done as a preprocessing step. We can process

the constraints according to this order. The advantage of this

order is that a constraint never modifies a node that has a

smaller level in the tree. By storing the pose for each node

Fig. 3. A simulated trajectory of a robot moving on the surface of a cube.
The left image shows an uncorrected trajectory and the right image depicts
the corrected one (approx. 4,700 constraints, 100 iterations, 11s).

 0

 20

 40

 60

 80

 100

100 [21s]50 [10s]0 [0s]

er
ro

r/
co

n
st

ra
in

t

iteration and execution time

Sphere

 0

 20

 40

 60

 80

 100

200 [21s]100 [11s]0 [0s]

er
ro

r/
co

n
st

ra
in

t

iteration and execution time

Cube

Fig. 4. The evolution of the error for the sphere and cube experiment.

in the tree, we therefore do not have to traverse the tree up

to the root anymore. It is sufficient to access the parent of

the top node in order to compute the poses for all nodes

along a path P . As a result, updating a constraint requires

a time proportional to |P| and the overall complexity per

iteration turns into O(M · E(|P|)). Here M is the number

of constraints, and E(|P|) is the average path length. In

all our experiments, we experienced that the average path

length grows more or less logarithmically with the number

of nodes in the graph. This explains the fast pose updates of

our approach shown in the experimental section.

VII. EXPERIMENTS

The experiments are designed to show the properties of

our technique. We first present results obtained in simulated

experiments and then show results using real robot data.

A. Experiments with Simulated Data

In order to give the reader an intuition about the accuracy

of our approach, we generated two datasets in which the

virtual robot moved on the surfaces of easy to visualize

geometric objects. In particular, we used a sphere and a

cube. The nodes of the network as well as the constraints

between the nodes were distorted with Gaussian noise. The

left images of Figure 1 and Figure 3 depict the distorted input

data whereas the images on the right illustrate the results

obtained by our approach. As the figures indicate, the pose

correction nicely recovers the original geometric structure.

To provide more quantitative results, Figure 4 depicts the

evolution of the average error per link versus the iteration

number as well as execution time for the sphere and the

cube experiment. As can be seen, our approach converges to

a configuration with small errors in less than 100 iterations.

We also applied the approach of Triebel et al. to both

datasets. As mentioned above, this approach linearizes the



Fig. 5. The real world dataset of the Intel Research Lab recorded in 2D is used to generate a large 3D dataset. Each of the four virtual buildings consist
of four identical floors. The left image depicts the starting configuration. The image in the middle depicts an intermediate result and the right one the
corrected map after 50 iterations of our approach. We plotted in the images constraints between buildings and floors. For a better visibility, we furthermore
plotted the constraints between individual nodes which introduce a high error and not all constraints. Constraints are plotted in light gray (red) and the
laser data in black. The small image on the right shows a (corrected) map of the two-dimensional laser range data.

Fig. 6. The corrected trajectory plotted on top of an aerial image of the
EPFL campus.

problem and solves the resulting equation system using LU

decomposition. Due to the comparably high noise in the

simulated experiments, the linearization errors prevented this

approach to find an appropriate configuration of the nodes.

B. Experiments with Partially Real Robot Data

The next experiment is obtained by extending data ob-

tained from a 2D laser range finder into three dimensions.

We used the 2D real world dataset of the Intel Research Lab

in Seattle and constructed virtual buildings with multiple

floors. The constraints between buildings and floors are

manually added but all other data is real robot data. The

dataset consists of 15.000 nodes and 72.000 constraints. We

introduced a high error in the initial configuration of the

poses in all dimensions. This initial configuration is shown

in the left image of Figure 5. As can be seen, no structure

is recognizable. When we apply our mapping approach, we

get an accurate map of the environment. The image in the

middle depicts an intermediate result and the right image

show the resulting map after 50 iterations. To compute this

result, it took around 3 minutes on a dual core Pentium 4

processor with 2.4 GHz.

Fig. 7. The trajectory corrected by our approach is shown in black and the
trajectory of the (D)GPS and IMU-based localization system is shown in
orange/gray. By considering Figure 6 one can see that the black one covers
the streets accurately.

C. Mapping with a Car-like Robot

Finally, we applied our method to a real world three-

dimensional dataset. We used a Smart car equipped with 5

SICK laser range finders and various pose estimation sen-

sors to record the data. The robot constructs local three-

dimensional maps, so-called multi-level surface maps [15],

and builds a network of constrains where each node repre-

sents such a local map. Constraints between the maps are

obtained by matching the individual local maps.

We recorded a large-scale dataset at the EPFL campus in

which the robot moved on a 10 km long trajectory. Figure 6

depicts an overlay of the corrected trajectory on an aerial

image. As can be seen from the trajectory, several loops

have been closed. Furthermore, it includes multiple levels

such as an underground parking garage and a bridge with an

underpass. The localization system of the car which is based

on (D)GPS and IMU data is used to compute the incremental

constraints. Additional constraints are obtained by matching

local maps. This is achieved by first classifying cells of

the local maps into different classes and then applying a

variant of the ICP algorithm that considers these classes.

More details on this matching can be found in our previous



 0

 0.5

 1

 1.5

 2

 0  1000  2000  3000  4000

er
ro

r/
co

n
st

ra
in

t

time[s]

Triebel et al.
Our approach

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4

er
ro

r/
co

n
st

ra
in

t

time[s]

Triebel et al.
Our approach

Fig. 8. The evolution of the average error per constraint of the approach
of Triebel et al. [15] and our approach for the dataset recorded with the
autonomous car. The right image shows a magnified view to the first 400 ms.

work [14]. Figure 7 plots the trajectory corrected by our

approach and the one of the (D)GPS/IMU-based localization

system.

We used the dataset from the EPFL campus to compare

our new algorithm to the approach of Triebel et al. In this

experiment, both approaches converge to more or less the

same solution. The time needed to achieve this correction,

however, is by orders of magnitudes smaller when applying

our new technique. This fact is illustrated in Figure 8 which

plots the average error per constraints versus the execution

time required by both techniques.

We also applied our 3D optimizer to pure 2D problems

and compared its performance to our 2D method [6]. Both

techniques lead to similar results, the 2D version, however, is

around 3 times faster that the 3D version. This results from

the additional DOF in the state space.

VIII. CONCLUSION

In this paper, we presented a highly efficient solution to the

problem of learning three-dimensional maximum likelihood

maps for mobile robots. Our technique is based on the graph-

formulation of the simultaneous localization and mapping

problem and applies a variant of gradient descent to minimize

the error in the network of relations.

Our method has been implemented and exhaustively tested

in simulation experiments as well as with real robot data.

We furthermore compared our method to a common existing

approach to learn such models in the three-dimensional

space. As shown in the experiments, our approach converges

significantly faster and yields accurate maps with low errors.

IX. APPENDIX: PROOF OF EQ. (19)

We can proof by induction that the equation system

in Eq. (18) always has a solution which is given by

Ak = RT
k (B1:k−1)

TRkB1:k k = 1, . . . , n. (20)

• Basis (n = 1):
Based on Eq. (18) with n = 1 and by knowing that

R1 is a rotation matrix, a solution always exists and is

given by

A1 = R−1
1 R1B1 = B1. (21)

• Inductive Step:

Assuming that Eq. (19) holds for k = 1, . . . , n− 1, we

show that it holds also for k = n. We use Eq. (18) with

k = n − 1 to substitute the term R1A1 . . . Rn−1An−1

in the equation for k = n. This leads to

(R1:n−1B1:n−1)RnAn = R1:n−1RnB1:n. (22)

By multiplying (R1:n−1B1:n−1Rn)−1 from the left

hand side, this turns into

An = R−1
n (B1:n−1)

−1(R1:n−1)
−1R1:n−1RnB1:n

Since Rk and Bk are rotation matrices, the inverse is

always defined and given by the transposed matrix:

An = RT
n (B1:n−1)

TRnB1:n q.e.d.(23)

ACKNOWLEDGMENT

This work has been supported by the DFG within the

Research Training Group 1103 and under contract number

SFB/TR-8 and by the EC under contract number FP6-

2005-IST-5-muFly, FP6-2005-IST-6-RAWSEEDS, and FP6-

004250-CoSy. Thanks to Udo Frese for his insightful com-

ments and to Rudolph Triebel for providing his mapping

system. Further thanks to Pierre Lamon for the joint effort

in recording the EPFL dataset.

REFERENCES

[1] T. Barrera, A. Hast, and E. Bengtsson. Incremental spherical linear
interpolation. In SIGRAD, volume 13, pages 7–13, 2004.

[2] F. Dellaert. Square Root SAM. In Proc. of Robotics: Science and

Systems (RSS), pages 177–184, Cambridge, MA, USA, 2005.
[3] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of

globally consistent maps. Autonomous Robots, 12(3):287 – 300, 2002.
[4] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm

for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.
[5] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. TORO project

at OpenSLAM.org. http://www.openslam.org/toro.html, 2007.
[6] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proc. of Robotics: Science and Systems

(RSS), Atlanta, GA, USA, 2007.
[7] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), pages 318–325,
Monterey, CA, USA, 1999.

[8] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:
a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2001.
[9] A. Howard, D.F. Wolf, and G.S. Sukhatme. Towards 3d mapping in

large urban environments. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 419–424, 2004.
[10] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.
[11] P. Newman, D. Cole, and K. Ho. Outdoor slam using visual appearance

and laser ranging. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Orlando, FL, USA, 2006.
[12] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM

with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[13] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.
[14] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Sieg-

wart. Towards mapping of cities. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Rome, Italy, 2007.
[15] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.


