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Summary. Simultaneous Localization and Mapping (SLAM) is one of thessical prob-
lems in mobile robotics. The task is to build a map of the emvinent using on-board
sensors while at the same time localizing the robot relatiibis map. Rao-Blackwellized
particle filters have emerged as a powerful technique foriisglthe SLAM problem in a
wide variety of environments. Itis a well-known fact for galing-based approaches that the
choice of the proposal distribution greatly influences thiaustness and efficiency achiev-
able by the algorithm. In this paper, we present a signiflgamtproved proposal distribu-
tion for grid-based SLAM, which utilizes whole sequences@fisor measurements rather
than only the most recent one. We have implemented our syatemreal robot and evalu-
ated its performance on standard data sets as well as in bafdov settings with few and
ambiguous features. Our approach improves the localizatiouracy and the map quality.
At the same time, it substantially reduces the risk of magfailures.

1 Introduction

The ability to construct models of natural and human-burdi®nments
is widely regarded as a precondition for autonomous semngbets. Such
models are required for basic tasks such as localizatiomasttbn plan-
ning. The combination of a Rao-Blackwellized particle fil(RBPF) with
occupancy grid maps represents an effective and flexiblgisolto the
SLAM problem as it only makes mild assumptions about thectiine of the
environment. Theoretically, given infinitely many pantis| RBPFs always
converge to the correct map. In practice however, only agfinitmber of
particles can be used. This humber inherently limits thesttamty which
can be represented by the filter and in this way can lead togéinee. Con-
sider, for example, the environment depicted in the uppetupe of Fig-
ure 1. This environment consists of two box-like landmavidsich cannot
be perceived at the same time due to a limited sensor rangegddmetric
shape of these boxes needs to be represented accuratedyniahas other-
wise the estimate about the orientation of the robot reddtivhe landmark
quickly gets lost. When the robot drives around a box sewuiras the
standard RBPF mapping approach typically turns the squaragde into a
circle, since slight pose errors are introduced by the éichitumber of par-
ticles and by the suboptimal proposal distribution usedaA&snsequence,
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Fig. 1. A mobile robot with a limited sensor range navigates throtighlow structured
environment depicted in the upper image, which consisteofdardboard boxes placed on
flat, open terrain. The robot startsBax 1, moves toBox 2 and revolves around it several
times before returning to its origin. Standard mapping apphes cannot deal with the large
amount of pose uncertainty build up when circling aroundseEond box, which results in a
seriously diverged map (lower right). In comparison, oysrapch using:-step look-ahead
proposals retains the squared shape of the boxes and yrelgiscarate map (lower left).
Note, that due to the limited laser range the hedge was &isibly at Box 1.

the particle filter loses track of the heading of the robot gieltls seriously
wrong maps like the one depicted in the lower right diagrarigtire 1.

In this paper, we present the so-called look-ahead mapgpgoach
which uses improved proposals for the robot pose to incréssaccuracy
of the particles after the proposal step. This is achievegoforming inde-
pendentk-step localization runs for the individual particles totbetlign
them to their local maps. In this way, the filter can deal witlhler lev-
els of noise and operate in less structured environmenfgeritrents with
real robots demonstrate that our approach can handleisitaah which
state-of-the-art RBPF-based approaches, like the ong agimtion model
based on the odometry error [10] or laser scan-matching €ior the
one using dynamically adapted proposal distributions daselocal laser
scan-matching [4] fail.
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2 Related Work

Originally, Murphyet al. [1, 10] have introduced Rao-Blackwellized par-
ticle filters as an effective means to solve the SLAM probléma RBPF,
each particle represents a possible robot trajectory andpa Whe frame-
work has been subsequently extended by Montemetlal. [8, 9] for
SLAM with discrete sets of landmarks. To efficiently learca@ate grid
maps, Eliazar and Parr [3] described an efficient map repraten. Addi-
tionally, Hahneket al.[5] proposed an improved motion model that substan-
tially reduces the number of particles required. Recehitbyyard presented
an extension towards multi-robot systems [6] in which hecdbes how
to effectively merge the information obtained by differenbots. Further-
more, Grisettet al.[4] proposed an extension of the approach by Habkhel
al. [5]. Instead of using a fixed proposal distribution, thegaithm com-
putes an improved proposal distribution on a per-partiesidy in a way
similar to FastSLAM-2, as presented by Montemerial. [7] for the case
of landmark-based mapping.

All of the above mentioned approaches perform mapping acelika-
tion as the data is available, that is, the pose and the magtaimty result
from the very same set of observations processed. In the predented
here, we usé: “future” measurements to build up a look-ahead proposal
distribution for the robot pose. In this way, the uncertaintthe robot pose
is reduced and consequently, less map uncertainty has tpbesented by
the filter.

3 Mapping with Rao-Blackwellized Particle Filters

The key idea of the Rao-Blackwellized particle filter for SUAs to rea-
son about possible robot trajectories and the correspgnaliaps using
a sample-based representation [5]. Formally, the task istinate the
joint posterior p(xi1.¢,m | zj.,u;) of the mapm and the trajectory
X4 = X1,...,%; Of the robot, given observations.; = z,...,z; and
odometry measurements;.; = uy,...,u;. In the particle filter frame-
work, the posterior after each time step is represented ley af sveighted

trajectoriest;t and the corresponding mamiﬂ generated from these tra-
jectories. Using the factorization
P(X1:¢, My \ Z1.¢,Urg) = p(my | X1, 21:4) - p(X1t | 21, ure) , (1)

we can derive a recursive filter that in each iteration ugltite trajectory
samplesx]., and then analytically builds the corresponding nmajp Each
filter iteration consists of the following steps:

1. Sampling The next generation of particquséﬂ} is obtained from the

generation{xgj_]l} by sampling from a proposal distribution Often,
a probabilistic odometry-based motion model is usedrfor
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2. Importance Weightingmportance Weightsut[j are assigned to the in-
dividual particles according to

wt[j] _ P(X[lj]t | Z1.4, U1t) x p(zt | m?_pxy)p(xy] | X?—haut) 'wt[j}l ‘
W(X[lﬂt | Z1:4, U1:t) (x| X[lj;},t_pzlztaulzt)

2)
The weights account for the fact that the proposal distidout is in
general not equal to the target distribution of successmes{2].
3. ResamplingParticles are drawn with replacement proportional torthei
importance weight.
4. Map Estimation For each particle, the corresponding map estimate

p(ml) | xV) 2,.,) is computed based on the trajectary, of that sam-
ple and the history of observationsg;.

The robustness and efficiency of this procedure stronglemigp on the
proposal distributionr that is used to sample the new state hypotheses in
the selection step. If the proposal distribution differs mauch from the true
posterior, there is a high risk of filter divergence. In thikdiging section,

we introduce a concrete proposal distributiothat utilizes a set of “future”
sensor measurements to yield better pose estimates. Tiigngsveight
update equation is straightforward to implement, whilertee approach is
more robust in standard and hard, poorly-structured enmiants.

4 L ook-ahead Proposals

The standard RBPF mapping approach fails in situationshicmthe par-
ticle distribution significantly differs from the true pesior. This can hap-
pen when the proposal distributienprovides a bad approximation to the
true one, or when the environment does not provide enougbtste to al-
low proper particle weighting. The latter situation is gtcated in the lower
right diagram of Figure 1. Due to the limited structure of émvironment,
the robot is unable to localize itself properly and loosesfthe structure
of Box 2. Before returning to its starting location, the roisclearly de-
localized, such that Box 1 appears twice in the resulting.rBaph a diver-
gence can either be avoided by using an extremely large nuwhparticles

or by directing the given number of particles to more acautatations.
We follow the latter strategy by computing the pose predicin each it-
eration based on thg next sensory inputs instead of just one. Thése
measurements are used to better localize each particlenwgtown map.
Concretely, for each mapping particle at time 1, we draw! localization
particles and localize therh steps ahead within their map. The resulting
pose posterior at time+ k is then used to sample the successor pose of the
mapping particle at time This process is visualized in Figure 2.
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Fig. 2. The algorithm for look-ahead pose sampling ugirgieps: For each mapping particle
at timet — 1 (first diagram), draw localizing particles (second). Move them according to
ut+; and weight them according ta.; until t + & (third diagram). Propagate back the
weights of the particles to the initial situation at timforth) and draw the successor state
according to this distribution (right diagram). The chabove the diagrams visualize the
current weights of the individual localization particlégtze highlighted timeindex.

By using the additional sensory input, a more informed and tinore
accurate proposal for the robot pose can be computed. Hyrriied idea
is to compute a better estimate for the pasgusing the previous position
x;—1, the commands (odometryy}.; , ., and the measuremenrts;, ;. up to
time-indext + k. As stated in Equation (1), the Rao-Blackwellized particle
filter is an approach for sequentially estimating the disitibn

p(mt‘xl:tyzlzt) p(Xlzt’ZLt, ul:t) . (3)

Here,p(x1.¢|z1.¢, u1.1) IS approximated using a particle filter, whose sam-
ples we will call SLAM patrticles In the standard approach, the SLAM
particles are drawn from a proposal distribution based an rtiotion
modelp(x¢|x;—1,u;). In our approach, we use the more informed proposal
P(X¢|X—1, W, Zeprke, Wpr 1440k, My—1). Such a proposal results from per-
forming an independert-step localization for each SLAM particle. The
localization algorithm is initialized with the map and trebot pose of the
corresponding SLAM particle at time— 1. Our proposal can be rewritten
more compactly, omittingn;_1, asp(x¢|x¢—1, Up.t1k, Ze:trk ), Which we
can rewrite as

p(Xt|Xt—1aut:t+k,Zt:t+k) = /p(xt:t+k|xt—1aU—t:t—i—kazt:t—i-k) dxt+1:t+k'(4)

Given the poses; . . . x;,; and the mapn,_; the obsersavtions, . ..z,
are independant. Therefore, we can rewrite the term inbelentegral as

t+k t+k

P(Xtettk [ X1, Whsthes Zst) = 1) Hp(zj|xj) ‘ Hp(Xj|Xj—1, u;). (5)
j=t j=t
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Heren = p(zuiqk|Xi—1uss4x) " is the Bayes normalizer. A particle ap-
proximation of Equation 5 (the localizer particles) can b&amed by sam-
pling a sequence of poses according to the sequence of noaiiomands.

Each samplé has a weight!;, , proportional to the likelihood of the chain

of observations starting at—
s~ [Ipe 2wy o = e ). ()
j=t

A sampled approximation of the integral in Eq. 4

p(Xt|Xt—1, ut:t+k>zt:t+k) ~ <X§i),v§i)> (7)
is recovered from the samples in Eqg. 6. This is done by trimgatach

trajectoryx( Y . attimet and by back-propagating the weights of the tra-
jectory, accordlng to Fig. 2. Due to resampling operatidins, evolutlon of

these trajectories can be described as a tree [3], thusrmﬂesat receives
a Welghtuf ? which is the sum of the weights of its successors.

The setS = {<x§2),v§2)>} is a sampled approximation of our pro-
posal distribution. We can draw from this sa&t new SLAM particles
{ng)} for time t, according to the importance weights. The true poste-
riorp( ' ]xt- 1, Zt, uz) (the SLAM particles) is recovered from this set by

assigning to each newly drawn samprlié a WEIghtwm according to the
importance sampling principle (see Eq. 2):

(1)1,.)
| 1 p(X |X 1,4, 0 )
wl[/ﬂ O<wtb]1 — t(j) t—15Zt, Ut 8)
P(Xt |Xt 1>utt+kaztt+k)
(Zt|x ) ( |Xt 1,ut)

P( |Xt 1> Witk Zg: t+k)

9)

_]] p(Z |Xt ) (10)

The last step follows directly from Equation 7 and the faett tie trajec-

tor|e5x§t) . had been drawn including the motion betweent — 1 andt.
Note that for updating the weight of a SLAM patrticle, we justed the
weight of the drawn successor state at titr(@rst iteration of the nested
localization run) and the corresponding weight at time k(= v;). Both
values are readily available from the localization run. &opn (10) as-

sures, that no information (odometry, measurements) egiated more
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than once. Thus, the presented approach does not changgithated pos-
terior distribution, but only the way it is represented bg timited particle
set of the filter.

5 Experiments

In this section, we present a set of experiments demomgjreitat our map-
ping approach can be applied in both indoor and outdoor scsn&urther-
more, we compared our approach using localization propdsaimed.P

in this section) to a state-of-the-art technique [4], whisks a dynamically
adapted proposal based on scan match8igR) and to a standard RBPF
using odometry-based proposaB3R). The results show that our approach
is more robust in poorly structured situations, while alsovjaling high
quality maps in more structured environments.

Measuring Map Quality

To assess the quality of the resulting maps we evaluate aungedsnoted
asrevisiting accuracy(RA), which reflects the error in the robot pose es-
timate at revisited places relative to previous visits.sTihieasure captures
the internal consistency of a map. It therefore better reflée practical
usefulness of the map than for example the absolute meanesheaor of
the corrected trajectory relative to an assumed true onelatter measure
is overly sensitive to distortions on a global level, whided in general not
lead to practical problems, and it requires a ground trajedttory.

For calculating theevisiting accuracy we add color markers to the
ground at places that are to be traversed several timesgdthnexper-
iment. We then recorded the timestamps at which the robatepasver
these checkpoints. Let be a checkpoint visited at times andt¢,. The
revisiting accuracy for this location is defined as

& =S Wbl /(1= (@l - )2+ @l - yy2) A - o)y2
J

Here, z,y, andf are the components of the pose vector and [0, 1]
is a weighing factor for the rotational component. Intutiy the revisit-
ing accuracy for a given checkpoint is the (weighted) distaoetween the
estimated positions within every map, weighted by the spwading map-
probability.

Mapping an Office Environment

We tested our approach in the highly structured office enwirent depicted
in Figure 3. Given this dataset, we compared our approbEh to SMP
andOPin terms of the revisiting accuracy measure defined aboger&i3
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Fig. 3. Maps obtained from the indoor environment usdB (left) andLP (right).

Fig. 4. Mapping a low-structured environment (upper left): Mapsaoted byOP (upper
middle) and our approach (upper right). Traveled paths @ftibot usingOP (lower left),
SMP (lower middle) and out.P approach (lower right). All approaches used 50 mapping
particles. Our approach used additionally 100 localizaparticles per map and a look-
ahead oft = 5.

depicts the maps obtained usi@d (left diagram) and our approach (right
diagram) for20 mapping particles. In our approach, we used 50 localization
particles per map particle and a look-ahead:cf 3. The map generated
using theSMPis similar to ours. The localization accuracy is between 5 cm
and 10 cm folOP and less than 5 cm for both, our approacRYandSMP.
Overall, a localization error of less than 10 cm is considigramall with

the given grid resolution of 5 cm per cell.

Mapping a Low-Structured Outdoor Environment

We compared our approach to those proposed by Héadinal. [5] and
Grisettiet al. [4] in the outdoor environment depicted in the upper left pic
ture of Figure 4. The robot started at the checkpoint “X”, edwaround
the cardboard box 15 times. Thereby it returned to the cleckpvery 5th
run. The laser range was limited to 4 meters, so that the baxtleaonly
visible map element. Figure 4 depicts the mapping resulisesDP and our
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Fig. 5. Mean and standard deviation for the approaches (left) amdatio of runs with an
error less than 0.2 (right). Note that tB#>-RBPF and the&sMPR-RBPF approach never had
an revisiting accuracy error below 0.2. Thus the success @tboth approaches (s

LP approach (second and third upper diagram) using 50 SLAMgbest
For generating the map, we used a look-ahead of 5 and 100 localiza-
tion particles per SLAM particle. The three lower diagram$igure 4 de-
pict typical paths estimated by the three mapping appreadie distance
between the checkpoint “X” and the box is around 4 m. As candem s
from these resultsQP fails to map this environment and yields a highly
inconsistent map. Although, when usisiMP, the map quality is higher
and the box has retained its squared shape, the resultingsratilbincon-
sistent. Our approach, in contrast, is able to deal with liisl situation
and generates accurate maps. To quantitatively evaluaggetifiormance of
the approaches, we analyzed the mapping results for diffenembers of
particles. Each approach was executed 30 times for eachgsatfe mea-
suredefgrshtlas , With 5. andt, being the timestamps, when the robot
moved over the checkpoint “X” for the first and the last timepectively.
Figure 5 (left) gives the results of this experiment. Forsmres of better
readability we depicted the results obtained by 50 mappartjgles only.
Furthermore, Figure 5 (right) depicts the success rateefuhs, defined
as the ratio of runs where the revisiting ereawas less than.2.

It can be seen from these experiments, that in situationis katdly
identifiable features, the performance obtained using mpgsal is higher
than the one obtained by the other grid based RBPF mappet. [Al-
though the RBPF based &M Poutperforms the standard RBPF, it achieves
significantly less accurate maps than the technique prdpostis paper.
Our approach is able to “look through gaps” of low structungiltenough
structure is provided for proper localization. In this wiagan handle such
a hard environment even with less mapping particles (seesfig\right),
curve obtained with 20 mapping particles and 100 locatizagiarticles for
each map).
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6 Conclusions

In this paper, we presented an extension to the Rao-BlatikeaIparticle
filter for simultaneous localization and mapping (SLAM), iehn signifi-
cantly improves the mapping in environments which are posiructured.
Our approach uses a novel proposal distribution that lédteps “ahead in
time” to yield a more informed pose estimate for the mappiecjgion. We
provided a mathematical derivation of the approach and stipthat the
weight update for our improved proposal takes a simple f@nr. method
has been implemented and tested on real robot data sets.riy&@d our
technique to two state of the art mapping techniques. Exparial results
suggest that our approach yields better maps, especiaiypvimonments
with sparse features that facilitate accurate localiratibparticles.
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