
Towards a Navigation System for Autonomous Indoor Flying

Slawomir Grzonka Giorgio Grisetti Wolfram Burgard

{grzonka, grisetti, burgard}@informatik.uni-freiburg.de

Autonomous Systems Lab, Department of Computer Science

University of Freiburg, D-79110 Freiburg, Germany

Abstract— Recently there has been increasing research on the
development of autonomous flying vehicles. Whereas most of the
proposed approaches are suitable for outdoor operation, only
a few techniques have been designed for indoor environments.
In this paper we present a general system consisting of sensors
and algorithms which enables a small sized flying vehicle to
operate indoors. This is done by adapting techniques which
have been successfully applied on ground robots. We released
our system as open-source with the intention to provide the
community with a new framework for building applications
for indoor flying robots. We present a set of experiments to
validate our system on an open source quadrotor.

I. INTRODUCTION

In recent years, the research community has shown an

increasing interest in autonomous aerial vehicles. Low-cost

and small-size flying platforms are becoming broadly avail-

able and some of these platforms are able to lift relatively

high payloads and provide an increasingly broad set of

basic functionalities. This enables even unexperienced pilots

to control these vehicles and allows them to be equipped

with autonomous navigation abilities. Whereas most of the

proposed approaches for autonomous flying [18], [8] focus

on systems for outdoor operation, vehicles that can au-

tonomously operate in indoor environments are envisioned to

be useful for a variety of applications including surveillance

and search and rescue. In such settings and compared to

ground vehicles, the main advantage of flying devices is their

increased mobility.

As for ground vehicles, the main task for an autonomous

flying robot consists in reaching a desired location in an

unsupervised manner, i.e. without human interference. In

the literature, this task is known as navigation. To address

the general task of navigation one requires to tackle a

set of problems ranging from state estimation to trajectory

planning. Several effective systems for indoor and outdoor

navigation of ground vehicles are nowadays available [1],

[2]. However, we are not aware of a similar system for flying

robots.

Whereas the general principles of the navigation algo-

rithms, which have been successfully applied on ground

robots, could in principle be transferred to flying vehicles,

this transfer is not straightforward for several reasons. First,

due to their limited payload and size an indoor flying robot

cannot carry the variety of sensors which can be easily

mounted on a mobile robot. Second, the additional degrees

of freedom of the vehicle prevents the direct use of well

known and efficient 2D algorithms for navigation. Third the

Fig. 1. A quadrotor robot equipped with our navigation system during a
mission (top) and position of the vehicle estimated on-line during the flight
with our navigation system (bottom).

dynamics of a flying robot is substantially more complex than

that of ground-based vehicles which makes them harder to

control.

In this paper, we describe a navigation system for indoor

flying vehicles which are able to lift a payload of at least

300 grams and can supply an additional power of 7.5 watts.

Our system is a result of an integrated hardware/software

design which meets several of the challenging constraints

imposed by small size flying vehicles while preserving a

large degree of flexibility. We evaluated our system on an

open source micro quadrotor, namely the Mikrokopter [3].

Figure 1 shows the Mikrokopter equipped with our naviga-

tion system during a mission. Special care has been taken

to allow potential users to adapt the system to alternative

platforms. An open source implementation is available at

www.openquadrotor.org.

The remainder of this paper is organized as follows. In

Section II we give an overview of the related literature.

Subsequently, we discuss the requirements of a navigation

system for an indoor flying vehicle (Section III) and we

present our system in sections IV and V. We conclude with

a set of experiments which illustrate the functionalities cur-

rently implemented in our navigation system in Section VI.



II. RELATED WORK

In the last decade, flying platforms received an increas-

ing attention from the research community. Many authors

focused on the modeling and on the control of these vehi-

cles [14], [16], [17], [4], with a particular emphasis on small

helicopters.

Hoffmann et al. [13] present a model-based algorithm for

autonomous flying with their STARMAC-quadrotor. Their

system flies outdoors and utilizes GPS and IMU measure-

ments. Bouabdallah et al. [6], [7] developed a complete

model of their quadrotor platform and a set of different

control strategies. Recently [5] they discussed the require-

ments of a flying platform for indoor navigation. Ng and

colleagues [8] have developed algorithms for learning con-

trollers for autonomous helicopter navigation. Their approach

allows helicopters to perform impressive maneuvres in out-

door environments. Tournier et al. [19] used monocular vi-

sion to estimate and stabilize the current pose of a quadrotor.

Thrun et al. [18] used a remotely controlled helicopter to

learn large-scale outdoor 3D models.

There also has been some work that addressed the nav-

igation of flying vehicles in indoor environments and in

absence of GPS signal. Roberts et al. [15] used ultrasound

sensors for controlling a flying vehicle in a structured testing

environment, while He et al. [12] presented a system for

navigating a small-size quadrotor without GPS. The pose

of the vehicle is estimated by an unscented Kalman filter.

Whenever the robot has to reach a given location, a path

which ensures a good observation density is computed from

a predefined map. These highly dense observations minimize

the risk of localization failures.

In contrast to this approach, our system is suitable to be

used on less structured environments which can be effectively

represented by grid maps. We focus on adapting a set of

algorithms which have been validated on ground robots to

indoor flying platforms.

III. INDOOR NAVIGATION OF AN AUTONOMOUS FLYING

VEHICLE

In this section, we first present the general problems in

robot navigation and discuss the additional issues introduced

by a flying platform. To autonomously reach a desired loca-

tion, a mobile robot should be able to determine a collision

free path connecting the starting and the goal locations. This

task is known as path planning. To compute this path, a

map of the environment should be known, which often also

has to be acquired by the robot by processing the sensor

measurements obtained during an exploration mission. This

task is known as simultaneous localization and mapping

(SLAM). For most of the applications it is sufficient to

perform SLAM off-line on a recorded sequence of measure-

ments. Finally, to follow the path with a sufficient accuracy,

the robot needs to be aware of its position in the environment

at any point in time. This task is known as localization. A

further fundamental component of a navigation system is the

control module which aims to move the vehicle along the

trajectory, given the pose estimated by the localization given

the measurements of the on-board sensors.

Several authors proposed effective control strategies to

accurately steer ground vehicles with complex kinematics.

Most of these approaches rely on high frequency estimates

of the relative movements of the vehicle obtained by inte-

grating the wheel encoders. The localization module does

not need to run at high frequency due to the accuracy of

the odometry within short time intervals. Unfortunately an

odometry estimate is often not available on flying vehicles.

In principle, one could obtain a dead reckoning estimate

by integrating the inertial sensors. However, the limited

payload typically requires designers to use only lightweight

MEMS devices which are affected by a considerable drift.

For these reasons, one needs frequent localization updates to

implement effective control strategies.

In outdoor scenarios one can estimate the pose of the ve-

hicle from the integration of GPS and inertial measurements.

Unfortunately, indoors GPS is not available. Furthermore, the

position accuracy obtained by a GPS would in general not

be sufficient for navigating indoors. In these contexts, the

robot is required to localize with the on-board sensors only.

To detect and avoid obstacles, these sensors should reliably

reveal the surrounding obstacles.

Due to the increased risk of damaging the flying platform

during testing, the developer should have the possibility of

intercepting at any point in time and take over the control of

the platform.

Finally, the more complex dynamics of a flying platform

poses substantially higher requirements on the accuracy of

state estimates than for typical ground-based vehicles. As an

example, on a helicopter an error in the pitch estimate of

2◦ would cause an error in the estimate of the translational

thrust of approximately tan(2◦) · 9.81 ≈ 0.34m
s2

. Thus, such

a relatively small error would force the helicopter to move

by 68 cm within two seconds. Whereas in outdoor scenarios

such a positioning error can often be neglected, it is not

acceptable indoors, as the free-space around the robot is

much more confined.

In sum, a navigation system for an indoor flying vehicle

should meet the following additional requirements: it should

• use sensors which can reliably detect obstacles in the

neighborhood of the robot,

• estimate the pose over time with high accuracy and at

high frequency,

• allow the user to take over control,

• provide a set of off-the-shelf basic behaviors, and

• use only lightweight on-board computers and sensors.

IV. HARDWARE ARCHITECTURE

Figure 2 shows a Mikrokopter [3] open source quadrotor

equipped with sensors and computational devices. Our sys-

tem is similar to the one proposed by He et al. [12] and

consists of the following components:

• a Linux-based Gumstix embedded PC with USB inter-

faces and a WiFi network card,



Fig. 2. The quadrotor platform used to evaluate the navigation system
includes a Mikrokopter (1), Hokuyo laser range finder (2), an XSens IMU
(3), a Gumstix computer (4), and a laser mirror (5).

• an Hokuyo-URG miniature laser sensor for localization

and obstacle avoidance,

• an XSens MTi-G MEMS inertial magnetic unit (IMU)

for estimating the attitude of the vehicle, and

• a mirror which is used to deflect some of the laser beams

along the z direction to measure the distance from the

ground.

The Gumstix communicates with the microcontroller on the

quad-rotor via an RS-232 interface and reads all the sensors.

Since the embedded PC runs Linux, we can develop our

algorithms off-board on standard PCs and execute them on-

board. We use the laser range finder for both measuring the

distances to the obstacles in the surrounding of the robot and

the distance from the ground. The IMU provides accurate

estimates of the roll and the pitch of the vehicle, which

are directly used for localization and mapping. All on-board

sensing and computation devices together weight about 300

grams and drain approximately 7.5 watts of power.

V. NAVIGATION SYSTEM

In this section, we present the functionalities currently

implemented in our navigation system. It is based on a

modular architecture in which the different components

communicate via the network using a publish-subscribe

mechanism. At the current state, all the device drivers and

some time-critical modules are executed on-board. The more

computing-intensive algorithms for localization and mapping

as well as the user interface are executed on a remote PC

that communicates over wireless network with the platform.

The roll φ and pitch θ measured by the IMU are typi-

cally accurate up to 1◦, which is sufficient for localization

and mapping. In practice, we therefore calculate only four

of the six components of the vehicle pose vector x =
(x y z φ θ ψ)T , namely the 3D position (x y z)T and

the yaw ψ.

The only sensor used for measuring the distances of

nearby objects is the laser range finder. Based on known

calibration parameters and on the attitude estimated by the

IMU, we project the endpoints of the laser in the global

frame. We address the problems of controlling and stabilizing

the platform along different partitions of the state space

separately. From the projected laser beams, we estimate the

x − y position and the yaw ψ of the vehicle in a 2D map.

To compensate for the lack of odometry measurements we

estimate the incremental movements by 2D scan matching.

Finally, we control the altitude of the vehicle and estimate

the height of the underlying surface by fusing the IMU

accelerometers and the distance from the ground as measured

by the laser.

In the remainder of this section, we first discuss the projec-

tion of the laser data and the estimation of the relative motion

between subsequent laser scans. Subsequently, we present

our localization, SLAM, and altitide estimation modules. We

conclude by discussing the user interaction and the control

algorithms.

A. Projection of the Laser Data

In this section, we explain how we project the laser

data in the global frame of the helicopter, given a set

of known calibration parameters. The laser range finder

measures a set of distances bi along the x − y plane, in

its own reference frame. Each of these distances can be

represented by a homogeneous vector bi in the 3D space

bi = (bi cosαi bi sinαi 0 1)T , where αi is the angle

of the individual beams. Let T laser
IMU be the homogeneous

transformation matrix from the IMU reference frame to the

laser frame, known from a calibration procedure and let

T IMU
world be the time dependent transformation from the world

to the IMU. Note that T IMU
world is computed only from the

estimated pitch and roll. We can compute the position of a

laser endpoint b
′

i which is not deflected by the mirror by the

following equation:

b
′

i = T IMU
world · T laser

IMU · bi (1)

Conversely, if a beam is deflected by the mirror, we obtain

the point h
′

i in the world frame by the following chain of

transformations:

h
′

i = T IMU
world · Tmirror

IMU · bi (2)

Here, Tmirror
IMU represents the transformation between the IMU

and the virtual laser position which accounts for the effect

of the mirror.

B. Incremental Motion Estimation

Some tasks, like pose stabilization, do not require to know

the absolute location of the vehicle in the environment.

Conversely, they rely on an accurate local pose estimate. We

can estimate the relative movement of the robot between two

subsequent scans by means of a scan matching procedure.

Since the attitude is known from the IMU, this procedure

can be carried on in 2D. In our implementation, we use an

approach similar to [11]. This algorithm estimates the most

likely pose of the vehicle x̂t given the previous pose xt−1,

the current projected laser measurements b
′

t and the previous

one b
′

t−1, as follows

x̂t = argmax
x:=(x,y,θ)

p(xt | xt−1,b
′

t−1,b
′

t), (3)



In our implementation we use a constant velocity model to

compute the initial guess for the search.

C. Localization

We estimate the 2D position of the robot in a given grid-

map by Monte-Carlo Localization [9]. The idea is to use a

particle filter to track the positon of the robot. Whenever

the robot travels over certain distance, we sample the next

generation of particles based from a proposal distribution

according to

x
[i]
t ∼ p(xt|x

[i]
t−1,vt,∆x) (4)

where x
[i]
t is the generated sample, x

[i]
t−1 is the previous sam-

ple, vt are the velocities computed by integrating the IMU

accelerations, and ∆x is the relative movement estimated

by the scan matcher. Subsequently, we sample a new set of

particles proportional to likelihood

p(b′

t|x
[i]
t ,m) (5)

of the measurement. Here b
′

t is the current projected laser

beam, x
[i]
t is the pose of the particle, and m is the known

map. Note that whenever we use a scan for computing the

odometry, the same scan is excluded from the evaluation of

the likelihood. This prevents us from reusing the same in-

formation, which ultimately would result in overly confident

estimates.

D. Simultaneous Localization and Mapping

Our mapping system addresses the SLAM problem by its

graph based formulation. A node of the graph represents a

3DoF pose of the vehicle and an edge between two nodes

models a spatial constraint between them. These spatial

constraints arise either from overlapping observations or

from odometry measurements. In our case the edges are

labeled with the relative motion between two nodes which

determine the best overlap between the scans acquired at the

locations of the nodes.

To compute the spatial configuration of the nodes which

best satisfy the constraints encoded in the edges of the graph,

we use an online variant of a stochastic gradient optimization

approach [10]. Performing this optimization on the fly allows

us to reduce the uncertainty in the pose estimate of the

robot whenever constraints between non-sequential nodes are

added.

The graph is constructed as follows: Whenever a new zt

observation is incorporated into the system, we create a new

node in the graph at the 2D position xt = (x, y, ψ). We

then create a new edge et−1,t between the current position

xt and the previous one xt−1. This edge is labeled with

the transformation between the two poses xt ⊖ xt−1. We

determine the position of the current node with respect to

the previous one by scan matching.

Whereas this procedure significantly improves the estimate

of the trajectory, the error of the current robot pose tends

to increase due to the accumulation of small residual errors.

This effect becomes visible when the vehicle revisits already

known regions. To solve this problem, we need to re-localize

the robot in a region of the environment which has been

visited long before. To resolve these errors, (i.e., to close the

loop), we apply our scan matching technique on our current

pose xt and a former pose xi, where i ≪ t. To detect a

potential loop closure, we identify all former poses which

are within the ellipsoid of the pose uncertainty obtained by a

Dijkstra projection of the node covariances starting from the

current robot position. If a match is found, we augment the

graph by adding a new edge between xi and xt labeled with

the relative transformation between the two poses computed

by matching their corresponding observations.

E. Altitude Estimation

Estimating the altitude of the vehicle in an indoor envi-

ronment means determining the global height w.r.t. a fixed

ground hg . Directly considering the z component of the

beams h
′

i deflected by the mirror would result in a correct

estimate only when the vehicle moves on a single floor

level. To relax this constraint, we simultaneously estimate

the altitude of the vehicle and the altitude of the underlying

surface with respect to an initial ground level. We assume

the altitude of the floor to be piecewise constant and we

utilize a Kalman filter for calculating the current altitude of

the vehicle with respect to the current floor level. The state

s = (z, vz) used by the filter consists of the current height

z and the corresponding velocity vz along the z axis. The

prediction of the filter is given by the following linear system

ŝt = Ast−1 +Baz, (6)

with

A =

(

1 ∆t
0 1

)

, B =

(

0.5 · ∆t2

∆t

)

. (7)

Here, az denotes the acceleration in z-direction measured

by the IMU and ∆t is the time elapsed between the current

and the last iteration. If the current measurement falls into

a confidence region of the prediction, we assume no change

in the floor level. Otherwise, the gap between the current

estimate and the measurement is assumed to be generated by

a new floor level. This floor level is constantly re-estimated

whenever the vehicle enters or leaves it.

The measurement update for the Kalman filter is given by:

st = ŝt +K · (ĥ− C · ŝt), (8)

with K being the Kalman gain, C describing the trans-

formation from the state to the measurement, and ĥ =
1
Nh

∑

i

zi + hg. Here Nh = |{h′

i}| denotes the number of

laser beams deflected by the mirror.

F. User Interaction

We control the flying vehicle by sending commands di-

rectly to the microcontroller which is in charge of the low

level control of the platform.

For safety reasons, the user can always control the vehicle

via a remote control (RC) and our system mixes the user and

the program commands. During our experiments, we allow

the programs to perturb the user commands by ±20%. In



this way, if one of the control modules fail the user still has

the possibility of safely land the vehicle without loosing time

of pressing a button first.

G. Control

The altitude is controlled by a PID controller which

utilizes the current height estimate z and the velocity vz
respectively. The height control Ch can be summarized as

Ch = Kp · (z − z∗) +Ki · ez +Kd · vz, (9)

with Kp,Ki and Kd being the constants for the P, I, and D

part respectively. Here z∗ denotes the desired height and ez
denotes the integrated error.

The yaw is controlled by a proportional controller which

computes the yaw command Cψ as

Cψ = Kp · (ψ − ψ∗). (10)

Here ψ and ψ∗ are the measured and desired yaw.

VI. EXPERIMENTS

In this section we present experiments for each of our

modules described above, namely localization, SLAM, alti-

tude and yaw control. During the experiments, altitude and

yaw control were executed on-board, while scan matching,

localization, SLAM, and altitude estimation were executed

off-board on a standard laptop computer.

A. Localization

Using 2D grid maps for localization enables our system

to operate with maps acquired by different kind of robots

and not necessarily built by the flying vehicle itself. In

this section we present an experiment in which we perform

global localization of the flying vehicle in a map acquired

with a ground-based robot. This robot was equipped with

a Sick Laser range scanner. The height of the scanner

was 80 cm. Throughout this experiment, the UAV kept a

height of 50 cm ± 10 cm and the particle filter algorithm

employed 5,000 particles. Given this number of particles,

our current implementation requires 5ms on a Dual-Core

2 GHz laptop, while scan matching requires 30ms on

average. Figure 3 shows three snapshots of the localization

process at three different points in time. The top image

depicts the initial situation, in which the particles were

separated uniformly over the free space. After approximately

1m of flight (middle image), the particles start to focus

around the true pose of the vehicle. After approximately

5m the quadrotor was globally localized (bottom image).

The blue circle highlights the current best estimate by

the filter. A full video of a localization run is available

on the Web under www.slawomir.de/publications/

grzonka09icra/localization_alufr.avi.

B. Mapping

We also evaluated the mapping system by remotely steer-

ing the quadrotor along the corridor of our office environ-

ment. The result of our SLAM algorithm is depicted in

Figure 4. The only mismatch between the map obtained

Fig. 3. Global localization of our quadrotor in a map, previously acquired
by a ground-based platform. The blue circle highlights the current best
estimate of the particle filter. The green circle marks the true pose of the
vehicle. All potential robot poses are visualized as small black dots within
the free (white) space of the environment. Top: initial situation. Middle:
after about 1 m of flight. Bottom: after approximately 5 m of flight the
quadrotor is localized.

Fig. 4. Map of our office environment built with our approach and using
the quadrotor. There is a small mismatch in the very left part if we compare
this map with the one depicted in Figure 3. This mismatch originates from
glass walls all around the robot which caused an error in the pose estimate.
Still the map is sufficient to reliably localize the quadrotor.

by the quadrotor and the map generated from data gathered

with ground-based robot consists in the very left part, where

the pose estimation was inaccurate due to glass walls all

around the robot. Despite this error, the map is sufficient for

performing localization and we obtain similar results as with

the map learned by the ground-based vehicle.

C. Altitude estimation

In the following we present an experiment which validates

our multi-level altitude estimation approach. We manually

flew our vehicle in an environment with two different objects

(a chair with a height of 46 cm and a table with a height of

77cm). During this flight the system flew four times over

each of the objects. When flying backwards over the objects

the vehicle passed them in the reverse order respectively.

Figure 5 shows the estimate of the altitude and the floor level

during one of the maneuvers. As can be seen from this figure,

our algorithm correctly detected the objects at corresponding



 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25

z 
[m

]

time [s]

Height estimate
Floor level estimate

Raw measurement

Fig. 5. Estimation of the global height of the vehicle and the underneath
floor level. Whenever the quadrotor moves over a new level, the innovation
is used to determine a level transition. The estimate of the height of each
level is refined whenever the robot re-enters that particular level.

-60

-40

-20

 0

 20

 40

 60

 80

 0  10  20  30  40  50  60  70  80

y
aw

 [
d

eg
re

es
]

time [s]

Yaw

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140

H
ei

g
h
t 

[m
]

time [s]

Height estimate

Fig. 6. Experiments for the autonomous stabilization of yaw (left) and
height (right). During the yaw stabilization experiment, the quadrotor was
required to rotate to 0

◦. From time to time, the user manually changed the
yaw . After the user released the remote control, the quadrotor autonomously
rotated back to the desired yaw angle. During the height experiment (right)
the quadrotor was required to maintain height of 60 cm. The resulting error
in height was ±10 cm.

levels. The estimated heights were 45.5 cm ± 2.1 cm and

76.4 cm±2.4 cm. The vehicle first passes over the table and

then over the chair.

D. Altitude and Yaw Control

In this final experiment, we show the capabilities of

our yaw and altitude control modules. The yaw controller

receives as input the yaw estimate coming from the scan

matcher, while the altitude controller receives the feedback

from the off-board altitude estimator. For testing the yaw

controller we set a desired yaw of 0◦ and once in a while,

we turned the helicopter via the remote control. When the

user released the rc, the vehicle always returned back to its

desired yaw with an error of ±2◦. Figure 6 (left) plots the

outcome of a typical run for yaw stabilization.

In a subsequent experiment, we tested the altitude stabi-

lization. The designated altitude was 60 cm. In the beginning

the vehicle was hovering over the ground. After enabling

the stabilization the vehicle started climbing to the desired

altitude. The desired height was kept by the vehicle up to an

error of ±10 cm. The results are shown in Figure 6 (right).

VII. CONCLUSIONS

In this paper, we proposed a navigation system for indoor

flying vehicles. Our current system includes major relevant

state estimation modules for localization, attitude and altitude

estimation, and SLAM. We furthermore implemented a yaw

and altitude control and an effective user interaction approach

which allows to reduce the risk of collisions. Our system

adapts a set of techniques which have been validated with

ground robots, and it can also operate with data acquired by

such platforms. We furthermore implemented some control

strategies for yaw and altitude stabilization which can be

further improved by incorporating a vehicle-specific model.

Our aim is to close the gap between systems for wheeled

robots and flying platforms. We want to provide a system

which allows the type of robot to be transparent to the user.

All modules described in this paper are made available as

open source under www.openquadrotor.org.

VIII. ACKNOWLEDGMENTS

This work has been supported by the EC under contract

number FP6-IST-034120 Micro/Nano based Systems

REFERENCES

[1] Carmen, http://carmen.sourceforge.net/.
[2] The Player Project, http://playerstage.sourceforge.net/.
[3] Mikrokopter, http://www.mikrokopter.de/.
[4] E. Altug, J.P. Ostrowski, and R. Mahony. Control of a quadrotor

helicopter using visual feedback. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2002.
[5] S. Bouabdallah, M. Becker, and R. Siegwart. Autonomous Minia-

ture Flying Robots: Coming Soon! IEEE Robotics and Automation

Magazine, 13(3), September 2007.
[6] S. Bouabdallah, P. Murrieri, and R. Siegwart. Towards Autonomous

Indoor Micro VTOL. Autonomous Robots, 18(2), March 2005.
[7] S. Bouabdallah and R. Siegwart. Full Control of a Quadrotor. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2007.
[8] A. Coates, P. Abbeel, and A.Y. Ng. Learning for Control from

Multiple Demonstrations. Proceedings of the International Conference

on Machine Learning (ICML), 2008.
[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization

for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Leuven, Belgium, 1998.
[10] G. Grisetti, D. Lodi Rizzini, C. Stachniss, E. Olson, and W. Bur-

gard. Online constraint network optimization for efficient maximum
likelihood mapping. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Pasadena, CA, USA, 2008.
[11] D. Hähnel, D. Schulz, and W. Burgard. Map building with mo-

bile robots in populated environments. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, 2002.

[12] R. He, S. Prentice, and N. Roy. Planning in information space for
a quadrotor helicopter in a GPS-denied environment. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.
[13] G. Hoffmann, DG Rajnarayan, SL Waslander, D. Dostal, JS Jang,

and CJ Tomlin. The Stanford testbed of autonomous rotorcraft for
multi agent control (STARMAC). The 23rd Digital Avionics Systems

Conference (DASC)., 2, 2004.
[14] P. Pounds, R. Mahony, and P. Corke. Modelling and Control of a

Quad-Rotor Robot. Proceedings of the Australasian Conference on

Robotics and Automation (ACRA), 2006.
[15] J.F. Roberts, T. Stirling, J.C. Zufferey, and D. Floreano. Quadrotor

Using Minimal Sensing For Autonomous Indoor Flight. European

Micro Air Vehicle Conference and Flight Competition (EMAV), 2007.
[16] A. Tayebi and S. McGilvray. Attitude stabilization of a four-rotor

aerial robot. 43rd IEEE Conference on Decision and Control (CDC),
2, 2004.

[17] A. Tayebi and S. McGilvray. Attitude stabilization of a VTOL
quadrotor aircraft. Control Systems Technology, IEEE Transactions

on, 14(3):562–571, 2006.
[18] S. Thrun, M. Diel, and D. Hahnel. Scan Alignment and 3-D Surface

Modeling with a Helicopter Platform. Field and Service Robotics

(STAR Springer Tracts in Advanced Robotics), 24:287–297, 2006.
[19] G.P. Tournier, M. Valenti, J.P. How, and E. Feron. Estimation and

Control of a Quadrotor Vehicle Using Monocular Vision and Moire
Patterns. AIAA Guidance, Navigation and Control Conference and

Exhibit, pages 21–24, 2006.


