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Abstract

Simultaneous Localization and Mapping (SLAM) is one of the classical
problems in mobile robotics. The task is to build a map of the environ-
ment using on-board sensors while at the same time localizing the robot
relative to this map. Rao-Blackwellized particle filters have emerged as a
powerful technique for solving the SLAM problem in a wide variety of envi-
ronments. It is a well-known fact for sampling-based approaches that the
choice of the proposal distribution greatly influences robustness and effi-
ciency achievable by the algorithm. In this paper, we present an improved
proposal distribution for grid-based SLAM with Rao-Blackwellized parti-
cle filters, which utilizes whole sequences of sensor measurements rather
than only the most recent one. We have implemented our system on a
real robot and evaluated its performance on standard data sets as well as
in hard outdoor settings with few and ambiguous features. Our approach
improves the localization accuracy and the map quality and substantially
reduces the risk of mapping failures.

1 Introduction

The ability to construct models of natural and human-build environments is
widely regarded as a precondition for truly autonomous service robots. Such
models are required for a variety of fundamental tasks including localization
and motion planning. The combination of a Rao-Blackwellized particle filter
(RBPF) with occupancy grid maps represents an effective and flexible solution
to the SLAM problem as it only makes mild assumptions about the structure of
the environment. Theoretically, given infinitely many particles, RBPFs always
converge to the correct map. In practice however, only a finite number of
particles can be used. This number inherently limits the accuracy of the filter
and too few particles can lead to a divergence of the filtering process.
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Figure 1: A mobile robot with a limited sensor range navigates through the
low structured environment depicted in the left image, which consists of two
cardboard boxes placed on flat, open terrain. The robot starts at Box 1, moves
to Box 2, and revolves around it several times before returning to its origin.
Standard mapping approaches cannot deal with the large amount of pose un-
certainty build up when revolving around the second box, which results in a
seriously diverged map (upper right map). In comparison, our approach using
k-step look-ahead proposals retains the squared shape of the boxes and yields
an accurate map (lower right).

For example, consider the environment depicted in the left image of Figure 1.
This environment consists of two box-like landmarks, which cannot be perceived
at the same time due to the limited sensor range. When the robot moves around
one of the boxes several times, the standard RBPF mapping approach with
a limited number of particles typically is not able to accurately estimate the
relative position of the robot to the box. As a result, the squared shape of the
box is turned into a circle for all particles. The particle filter loses track of the
heading of the robot and yields seriously wrong maps like the one depicted in
the upper right diagram of Figure 1.

Some SLAM systems address situations in which there is too few structure in
the environment by integrating multiple measurements into local maps. Those
local maps are then used as input for a RBPF. In this paper, we propose an
orthogonal approach which stays within the RBPF framework. The two tech-
niques can be combined to obtain a further increase in performances. However,
the major aim of this paper is to investigate the benefits of a k-step look-ahead
algorithm which is able to compute more accurate proposal distributions.

Applied within the context of Rao-Blackwellized SLAM, our approach per-
forms k-step localization runs for the individual particles to better align them
to their maps. In this way, the filter can deal with higher levels of noise and
operate in less structured environments. Experiments with real robots demon-
strate that our approach can handle situations in which state-of-the-art RBPF-
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based approaches, like the one using a motion model based on the odometry
error [Murphy, 1999] or laser scan-matching error [Hähnel et al., 2003], or the
one using dynamically adapted proposal distributions based on local laser scan-
matching [Grisetti et al., 2007] fail.

The article is organized as follows. After the discussion of related work in
the next section, we give an introduction to the SLAM problem and discuss the
Rao-Blackwellized particle filter. In Section 4, we introduce our k-step look-
ahead proposals and discuss their integration into the general RBPF mapping
framework. In Section 5, we give qualitative and quantitative results for real
mapping scenarios.

2 Related Work

Particle filters have been applied to various kinds of robotic state estimation
problems including localization [Fox et al., 1999], mapping [Hähnel et al., 2003,
Eliazar and Parr, 2003, Grisetti et al., 2007, Montemerlo et al., 2003], or data
association [Tipaldi et al., 2007]. Murphy, Doucet, and colleagues were the first
to present an approach based on a Rao-Blackwellized particle filter for learn-
ing grid maps [Doucet et al., 2000, Murphy, 1999]. The first efficient approach
for mapping with Rao-Blackwellized particle filters was the FastSLAM algo-
rithm [Montemerlo et al., 2002]. It uses a set of Kalman filters to represent
the map features conditioned on a sampled robot trajectory. The particles are
drawn from the odometry motion model and weighed by the likelihood of the ob-
servations. The grid-based variant [Hähnel et al., 2003] performs scan-matching
as a preprocessing step. In this way, they are able to draw samples from dis-
tributions with lower variances compared to proposals computed based on the
odometry only. This reduces the number of required particles and allows a robot
to estimate the map online. In contrast, [Eliazar and Parr, 2003] focus on an
efficient grid map representation which allows the particles to share a map.

Howard presented an extension towards multi-robot systems [Howard, 2005]
in which he describes how to effectively merge the information obtained by
different robots. FastSLAM2 [Montemerlo et al., 2003] has been subsequently
proposed as an extension to the original FastSLAM algorithm. It computes
an improved proposal based on the most recent sensor observation to restrict
the space for sampling. A Gaussian approximation is computed for each par-
ticle by integrating the most recent odometry and the most recent landmark
measurements via an extended Kalman filter. [Grisetti et al., 2007] extended
FastSLAM2 to deal with large-scale occupancy grid maps. This technique com-
bines scan-matching on a per particle basis with informed proposal distributions.
Recently, [Stachniss et al., 2007] build on these ideas and propose to adaptively
switch to more complex, i.e. non-Gaussian, proposal distributions when the
posterior deviates too much from a Gaussian.

All of the above-mentioned approaches perform mapping and localization
as the data is available. In this way, the pose and the map uncertainty are
computed by processing for the very same set of observations. In contrast, this
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work uses k future measurements to build up a look-ahead proposal distribution
for the robot pose. In this way, the uncertainty in the robot pose is reduced
and consequently, less map uncertainty has to be represented by the filter.

In parallel to our work, [Beevers and Huang, 2007] proposed to use look-
ahead proposals for the landmark based case. They propose two strategies
for incorporating the future information into the sampling process. The first
approach consists in drawing samples from a so called “block proposal distribu-
tion”. The block proposal is obtained by computing the Gaussian over the last
k states by means of an EKF. The second approach integrates the next k mea-
surements at each step. The robustness of the filter is increased by smoothing
the resulting trajectories. Conversely, we propose to adapt the sampling proce-
dure in a particle filter-based framework by integrating the k last measurements
in the spirit of [Pitt and Shephard, 1997]. We apply this general principle to
the Rao-Blackwellized particle filter (RBPF) in the SLAM context. The basic
idea is to delay the drawing of a successor state. This allows us to take into
account observations acquired within a temporal interval and to improve the
state prediction based on the odometry. In this way we reduce the risk of per-
forming actions, which are locally beneficial but lead to filter degeneration at a
later stage.

3 Mapping with Rao-Blackwellized Particle Fil-

ters

The key idea of the Rao-Blackwellized particle filter for SLAM is to track
the possible robot trajectories and the corresponding maps using a sample-
based representation [Hähnel et al., 2003]. Formally, the task is to estimate the
joint posterior p(x1:t,m | z1:t,u1:t) of the map m and the trajectory x1:t =
〈x1, . . . ,xt〉 of the robot, given observations z1:t = 〈z1, . . . , zt〉 and odometry
measurements u1:t = 〈u1, . . . ,ut〉. In the particle filter framework, the posterior

after each time step t is represented by a set of weighted trajectories {x
[j]
1:t} and

the corresponding maps {m
[j]
t } generated from these trajectories. Using the

factorization

p(x1:t,mt | z1:t,u1:t) = p(mt | x1:t, z1:t) · p(x1:t | z1:t,u1:t) , (1)

we can derive a recursive filter that in each iteration updates the trajectory sam-

ples x
[j]
1:t and then analytically builds the corresponding maps m

[j]
t . Concretely,

each filter iteration consists of the following steps:

1. Sampling: The next generation of particles {x
[j]
t } is obtained from the

generation {x
[j]
t−1} by sampling from a proposal distribution π. Often, a

probabilistic odometry-based motion model is used for π.
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2. Importance Weighting: Importance weights w
[j]
t are assigned to the indi-

vidual particles according to

w
[j]
t =

p(x
[j]
1:t | z1:t,u1:t)

π(x
[j]
1:t | z1:t,u1:t)

∝
p(zt | m

[j]
t−1,x

[j]
t )p(x

[j]
t | x

[j]
t−1,ut)

π(xt | x
[j]
1:t−1, z1:t,u1:t)

· w
[j]
t−1 . (2)

The weights account for the fact that the proposal distribution π is in gen-
eral not equal to the target distribution of successor states [Doucet et al., 2001].

3. Resampling: Particles are drawn with replacement proportional to their
importance weight.

4. Map Estimation: For each particle, the corresponding map estimate

p(m
[j]
t | x

[j]
1:t, z1:t) is computed based on the trajectory x

[j]
1:t of that sample

and the history of observations z1:t.

The robustness and efficiency of this procedure strongly depends on the
proposal distribution π that is used to sample the new state hypotheses in
the selection step. If the proposal distribution differs too much from the true
posterior, there is a high risk of filter divergence.

In the following section, we introduce a concrete proposal distribution π that
utilizes a set of future sensor measurements to yield better pose estimates. The
resulting weight update equation is straightforward to implement, while the new
approach is more robust in standard and hard, poorly-structured environments.

4 Look-ahead Proposals

The standard RBPF mapping approach fails in situations, in which the particle
distribution significantly differs from the true posterior. This can happen when
the proposal distribution π provides a bad approximation of the true one or
when the environment does not provide enough structure to allow proper par-
ticle weighting. The latter situation is illustrated in the lower right diagram of
Figure 1. Due to the limited structure of the environment, the robot is unable to
localize itself properly and looses the fine structure of Box 2. Before returning
to its starting location, the robot is clearly de-localized, such that Box 1 appears
twice in the resulting map. Such an outcome can either be avoided by using an
extremely large number of particles or by directing the given number of parti-
cles to more accurate locations. We follow the latter strategy by computing the
pose prediction in each iteration based on the k next sensory inputs instead of
just one. These k measurements are used to better localize each particle within
its own map. Concretely, for each mapping particle at time t − 1, we draw M

localization particles and localize them k steps ahead within their map. The
resulting pose posterior at time t + k is then used to sample the successor pose
of the mapping particle at time t. This process is visualized in Figure 2.
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Figure 2: The algorithm for look-ahead pose sampling. For each mapping particle at time t−1 do the following steps: [a] draw
M localizing particles. [b] and [c]: move them according to ut+i and weight them according to zt+i until t + k [d]: propagate
back the weights of the particles to the initial situation at time t. [e], [f ], and [g]: draw the successor states according to this
distribution (right diagram). The histograms above the diagrams visualize the current weights of the individual localization
particles at the highlighted time index. In column [e], the weights of the particles drawn as successor states are highlighted in
the histogram. Note that both new SLAM particles at time t now originate from SLAM particle no. 2.
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By using the additional sensory input, a more informed and thus more ac-
curate proposal for the robot pose can be computed. Formally, the idea is to
compute a better estimate for the pose xt, using the previous position xt−1, the
commands (odometry) ut:t+k, and the measurements zt:t+k up to time-index
t + k. As stated in Equation (1), the Rao-Blackwellized particle filter is an
approach for sequentially estimating the distribution

p(mt|x1:t, z1:t) p(x1:t|z1:t,u1:t) . (3)

Here, p(x1:t|z1:t,u1:t) is represented by a set of sampled trajectories. In the
standard approach, these samples are drawn from a proposal distribution based
on the motion model p(xt|xt−1,ut). In our approach, we use the more informed
proposal p(xt|xt−1,ut, zt:t+k,ut+1:t+k,mt−1).

All in all we can compute a k-step look-ahead proposal by performing a
k-step localization using M particles for each of the original N particles. For
better readability, we denote these two types of samples as localization particles
and SLAM particles respectively in the remainder of this paper. The nested
localization algorithm is initialized with the map and the robot pose of the
corresponding SLAM particle at time t − 1. Our proposal can be rewritten
more compactly by omitting mt−1 as:

p(xt|xt−1,ut:t+k, zt:t+k) =

∫

p(xt:t+k|xt−1,ut:t+k, zt:t+k) dxt+1:t+k. (4)

Given the poses xt . . .xt+k and the map mt−1, the observations zt . . . zt+k are
independent. This allows us to rewrite the term inside the integral as

p(xt:t+k|xt−1,ut:t+k, zt:t+k)

= η · p(zt+k|xt−1:t+k,ut:t+k, zt:t+k−1) p(xt−1:t+k,ut:t+k, zt:t+k−1)

= η · p(zt+k|xt+k) p(xt−1:t+k,ut:t+k, zt:t+k−1) , (5)

where η = p(xt−1,ut:t+k, zt:t+k)−1. Iterating the last step over zt+k−1, . . . , zt

and xt+k, . . . ,xt leads to

p(xt:t+k|xt−1,ut:t+k, zt:t+k) = η′

t+k
∏

τ=t

p(zτ |xτ ) ·

t+k
∏

τ=t

p(xτ |xτ−1,uτ ) . (6)

Here, η′ = p(zt:t+k|xt−1ut:t+k)−1 is the Bayes normalizer. A particle approxi-
mation of Equation 6 (the localization particles) can be obtained by sampling
a sequence of poses according to the sequence of motion commands

x
[i]
t:t+k ∼

t+k
∏

τ=t

p(x[i]
τ |x

[i]
τ−1,uτ ) , v

[i]
t:t+k ∝

t+k
∏

τ=t

p(zτ |x
[i]
τ ) . (7)

A sampled approximation of the integral in Eq. 4

p(xt|xt−1,ut:t+k, zt:t+k) ∼
〈

x
[i]
t , v̂

[i]
t

〉

(8)
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is recovered from the samples in Eq. 7. Here x
[i]
t and v̂

[i]
t denotes one localization

particle and its weight. These quantities are computed by truncating each

trajectory x
[i]
t:t+k at time t and by propagating the likelihoods of the observations

along the trajectory backwards in time (see the forth column of Figure 2). Due
to resampling operations, the evolution of these trajectories can be described as
an ancestor tree [Eliazar and Parr, 2003]. In our algorithm, the ancestor tree
has M leafs, and a depth of k. Each level of the tree corresponds to a step of
the localization algorithm. The parent of a particle in the tree at level i is the
particle of level i − 1 from which the particle at level i has been re-sampled.

To compute the weight of the sample x
[i]
t one has to traverse the tree from

the leafs at time t + k up to the root at time t by summing up the weights of

the leafs. Thus, the sample x
[i]
t receives a weight v̂

[i]
t which is the sum of the

weights of its successors at time t + k

v̂
[i]
t =

M
∑

h=1

δih · v
[h]
t:t+k , (9)

δih =

{

1 if particle i at time t is parent of particle h at time t + k

0 otherwise.
(10)

The set S =
{〈

x
[i]
t , v̂

[i]
t

〉}

is a sampled representation of our proposal distri-

bution. We can draw from this set N new SLAM particles {x
[j]
t } for time

t according to the importance weights v̂
[i]
t . Note that S contains the N · M

localization particles of all SLAM particles.
According to the importance sampling principle (see Eq. (2)), an approx-

imation of the true posterior p(x
[j]
t |x

[j]
t−1, zt,ut) is recovered from this set by

assigning to each newly drawn sample x
[j]
t a weight w

[j]
t that corrects the bias

introduced by the proposal distribution:

w
[j]
t ∝ w

parent(j)
t−1

p(x
[j]
t |x

[j]
t−1, zt,ut)

p(x
[j]
t |x

[j]
t−1,ut:t+k, zt:t+k)

(11)

∝ w
parent(j)
t−1

p(zt|x
[j]
t )p(x

[j]
t |x

[j]
t−1,ut)

p(x
[j]
t |x

[j]
t−1,ut:t+k, zt:t+k)

(12)

∝ w
parent(j)
t−1

p(zt|x
[j]
t )

v̂
[j]
t

. (13)

The last step follows directly from Eq. (8) and the fact that the trajectories

x
[i]
t:t+k have been drawn by including the motion ut between t − 1 and t. Note

that for updating the weight of a SLAM particle, we just need the weight of the
drawn successor state at time t (first iteration of the nested localization run)
and the corresponding weight v̂t at time t+ k. Both values are readily available
from the localization run.
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Note that our algorithm updates the filter in a sliding window-like manner.
Despite of this, we do not integrate information multiple times, since the “dis-

counting” of particle weights by v̂
[j]
t as outlined above effectively removes the

measurement information between t + 1 to t + k from the distribution. Since
the weight correction is performed after the new set of SLAM particles has been
drawn, the presented approach does not change the estimated posterior distri-
bution, but only the way it is represented by the limited number of particles in
the filter.

5 Experiments

In this section, we present a set of experiments demonstrating that our map-
ping approach can be applied in both indoor and outdoor scenarios. We com-
pare our approach using k-step look-ahead proposals to a state-of-the-art tech-
nique [Grisetti et al., 2007], which uses a dynamically adapted proposal based
on scan matching and to a standard RBPF mapper using odometry-based pro-
posals. The results show that our approach is more robust in poorly struc-
tured environments, while also providing high quality maps in typical, highly-
structured environments. For better readability, we use the following abbrevia-
tions to denote the alternative mapping approaches:

OP: Standard RBPF mapper with odometry-based proposal

SMP: RBPF mapper with one-step look-ahead using laser scan-matching as
proposed in [Grisetti et al., 2007]

LP: Our RBPF mapper using k-step look-ahead proposals

For LP, we give results for different look-ahead lengths k. It should be noted
that for the case k = 1, our algorithm uses the same information in each iteration
as SMP, i.e., the most recent laser scan zt. The difference lies in the way, in
which this observation is used to construct the proposal distribution. By relying
on local laser scan-matching, SMP is biased toward the most-likely alignment
of the current scan to the existing map. The approach thus shows excellent
performance in highly structured environments but degrades when only little
structure is available. By performing sampling-based localization instead, our
approach is not biased in this way, but rather depends on having a sufficiently
high number of localization particles available.

Measuring Map Quality Assessing the quality of occupancy grid maps is a
non-trivial problem. Straight-forward measures, like the absolute mean squared
error of the corrected trajectory relative to an assumed true one, are overly sensi-
tive to distortions on a global level. Moderate distortions, however, do typically
not lead to practical problems. The same argument holds for correlation-based
measures applied directly to the constructed grid-maps. Many works have thus
applied measures of relative deviation from a ground-truth trajectory. While
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Figure 3: Mapping an office environment using OP (upper left) and our LP
approach (lower left). Map of the Intel Building using our approach (right)
with 50 mapping particles, 50 localization particles per map, and a look-ahead
of 6. This scenario requires closing one large loop.

this is a more suitable measure in realistic scenarios, it still requires the avail-
ability of ground-truth trajectories, and it sometimes fails to capture consistency
problems in the estimated maps.

We thus define a measure denoted as the revisiting error (RE), which reflects
the error in the robot pose estimate at revisited places relative to previous visits.
This measure captures the internal consistency of a map and does not require
ground truth information. For calculating the revisiting error in an experiment,
we add color markers to the ground at places that are to be traversed several
times during the experiment. We then record the timestamps at which the robot
passes over these checkpoints. Let p be a checkpoint visited at times t1 and t2.
The RE for this location is defined as

ǫ
p
t1,t2

=
∑

j

w[j]
√

(1 − λ)(∆x2
j + ∆y2

j ) + λ∆θ2
j ,

with ∆xj := x
[j]
t1

− x
[j]
t2

, and ∆yj , ∆θj defined analogously. Here, x, y, and θ

are the components of the pose vector, λ ∈ [0, 1] is a weighing factor for the
rotational component, and j denotes the index of the SLAM particles (map
hypotheses) that constitute the posterior distribution over maps. Intuitively,
the revisiting error for a given checkpoint is the (weighted) distance between
the estimated positions within every map, weighted by the corresponding map-
probability.

Mapping Highly-structured Office Environments We tested our ap-
proach in the office environment depicted in the left-hand side diagrams of
Figure 3. Given a log-file recorded using a ActivMedia Pioneer II robot in this
environment, we compared our approach LP to SMP and OP in terms of the
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Figure 4: Mapping a low-structured environment (top left). The robot starts at
location X, revolves around the box several times and, during this, returns to
location X three times. Maps obtained by OP (bottom left) and our approach
LP (bottom center). Corrected trajectories of the robot using OP (top right),
SMP (middle right) and our LP approach (bottom right). All approaches used
50 SLAM particles. Our approach used 100 localization particles per map and
a look-ahead of k = 5.

revisiting accuracy measure defined above. The two diagrams depict the maps
obtained using OP (upper image) versus LP (lower image) with 20 mapping
particles. In our approach, we used 50 localization particles per SLAM particle
and a look-ahead of k = 3. The map generated using the SMP approach is
nearly indistinguishable to ours. The revisiting accuracy is between 5 cm and
10 cm for OP and less than 5 cm for both, LP and SMP.

We also tested our algorithm using the freely available Intel data set to
demonstrate that our approach is able to close loops in larger environments. The
resulting map for 50 SLAM particles, 50 localization particles per map, a look-
ahead of k = 6, and a maximum laser range of 9 meters is depicted in the right
diagram of Figure 3. As can be seen from the diagram, we obtain a consistent
map (i.e. no double walls) although only 50 SLAM particles are available to
represent the uncertainty about the map. Note that approaches based on scan-
matching typically lead to more accurate maps in such an environment, since
enough structural information is available to precisely align the scans.
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Figure 5: Revisiting error of OP and SMP in the low-structured environment
with 30 SLAM particles (left), our LP approach with 30 SLAM particles, 10
localization particles per map (middle), and LP with 30 SLAM particles, 50
localization particles per map (right). The error is given in terms of mean,
standard deviation, and median over a sample set of 25 runs.
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Figure 6: Revisiting error of OP and SMP in the low-structured environment
with 50 SLAM particles (left), our LP approach with 50 SLAM particles, 70
localization particles per map (middle). Success-rates of LP for different pa-
rameter settings (success = revisiting error less than 0.2, right diagram).

Mapping Low-Structured Outdoor Environments We evaluated the three
alternative mapping approaches in the outdoor environment depicted in the up-
per left picture of Figure 4. An ActivMedia Pioneer II robot started at the
checkpoint X and moved around the cardboard box 15 times. During this, it
returned to the checkpoint every 5th run. The maximum range of its on-board
Sick Laser Range finder was limited to 2m, such that the cardboard box was
the only visible map element. The distance between the checkpoint X and the
box is approximately 4m.

The maps and robot trajectories in Figure 4 depict typical results taken from
25 runs of the OP, SMP, and LP approaches. As can be seen from the diagrams,
OP fails to map this environment and yields a highly inconsistent trajectory (top
right). Although, when using SMP, the map quality is higher and the box has
retained its squared shape (similar to the LP map depicted in middle diagram
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on bottom of the figure), the resulting trajectory is still inconsistent (middle
right). Our approach, in contrast, is able to deal with this hard situation and
produces a precise map as well as a consistently corrected trajectory (bottom
right).

To quantitatively evaluate the performance of the approaches for different
parameter settings, we analyzed the revisiting error (RE, see above) for different
numbers of particles and a varying amount of look-ahead steps. Each approach
was executed 25 times for each parameter setting. We measured ǫX

t1,t2
, with

t1 and t2 being the timestamps, when the robot passed the checkpoint X for
the first and the last time respectively. Figure 5 and Figure 6 give the mean
revisiting errors, standard deviations, and the median errors for the 25 runs and
the different parameter settings using our three algorithms.

The right diagram of Figure 6 gives the success rates of LP, i.e., the ratio of
successful runs w.r.t. the total number of runs. We count a run as successful,
if its revisiting error ǫ is lower than 0.2. Visually speaking, we expect the end
pose of the robot to be no more than 20cm off its starting location in the final
posterior of the filter. Given a grid map resolution of 5cm, this corresponds to
a deviation of four cells. Note that due to the limited range of 2m, neither OP
nor SMP where able to generate consistent maps.

It can be seen from these experiments, that in situations with hardly identifi-
able features, the performance obtained using our proposal is higher than the one
obtained by the other grid based RBPF mapping systems [Grisetti et al., 2007,
Hähnel et al., 2003]. Although the SMP mapper outperforms the standard
RBPF in less structured environments, it achieves significantly less accurate
maps than the technique proposed in this paper. By sampling k steps ahead
in time, our approach is basically able to “look through gaps” of low structure
until enough structure is provided for proper localization. In this way, it can
map sparse environments even with relatively small sets of particles.

As can be seen from Figure 5 and 6, the revisiting error reaches an optimum
for a certain number k of look-ahead steps and does not decrease monotonically
for growing k. This is due to the fact that long look-ahead sequences lead the
localization particles into unknown map areas. In mostly unknown areas of the
map, in turn, it is hard to correctly characterize the distribution of possible
observations. Thus, no state-of-the-art observation model used in grid-based
SLAM can avoid introducing a bias to the distribution of particle weights in
unknown areas, which leads to a degrading filter performance at some point.
In the literature, this is discussed as one of the open problems in mapping,
localization, and exploration. For a given practical application, the optimal
number of look-ahead steps can be found in the same manner as other system
parameters, e.g., the number of particles.

Due to the k-step look-ahead procedure, the filter is effectively delayed by
k time steps. For real-time control (e.g., in exploration tasks), one would thus
chain the odometry measurements ut+1:t+k to the position currently estimated
by the SLAM algorithm to estimate the current location. Alternatively, control
could be based on the current posterior of the localization particles. Or, if at
any point in time, high precision and reliability are required, the k-step look-
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ahead “buffer” can be flushed in a straight-forward manner to integrate all
available information. In our experiments, even the more difficult situations did
not require more than 10 look-ahead steps, which corresponds to a delay in the
order of 1-2 seconds.

The computational complexity of the look-ahead step is proportional to the
total number of localization particles M · N , the number of look-ahead steps
k and to the computational cost of evaluating the likelihood of a particle p(z |
x). The expensive part of the algorithm is to compute the likelihood of the
localization particles, as it is the case for most particle filter-based algorithms.
This step can be made efficient, e.g., by using the likelihood fields sensor model
for range sensors [Thrun et al., 2005]. In this way, computing the likelihood
of one particle requires h accesses to a lookup table, where h is the number
of laser beams used. Our implementation computes the likelihoods of 2500
particles using 90 laser beams in around 10 ms on a 2 GHz Dual-Core laptop.
Additionally, when using look-ahead proposals, one typically requires less SLAM
particles for mapping. This reduces the memory requirements of the filter.

6 Conclusions

In this paper, we presented an extension to the Rao-Blackwellized particle fil-
ter for simultaneous localization and mapping (SLAM), which significantly im-
proves the mapping quality and leads to accurate maps even in environments
which are poorly structured. Our approach uses a novel k-step look-ahead
proposal distribution to yield a more informed pose estimate. We provided a
mathematical derivation of the approach and showed that the weight update
for our improved proposal takes a simple form and thus is easy to integrate into
a standard RBPF framework. Our method has been implemented and tested
on real data sets. We furthermore compared our technique to two state-of-the-
art mapping techniques. Experimental results suggest that our approach yields
highly accurate maps and outperforms alternative approaches in environments
with sparse features.
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