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Abstract— We present a novel approach to build approximate
maps of structured environments utilizing human motion and
activity. Our approach uses data recorded with a data suit
which is equipped with several IMUs to detect movements of a
person and door opening and closing events. In our approach
we interpret the movements as motion constraints and door
handling events as landmark detections in a graph-based SLAM
framework. As we cannot distinguish between individual doors,
we employ a multi-hypothesis approach on top of the SLAM
system to deal with the high data-association uncertainty. As a
result, our approach is able to accurately and robustly recover
the trajectory of the person. We additionally take advantage of
the fact that people traverse free space and that doors sepae
rooms to recover the geometric structure of the environment
after the graph optimization. We evaluate our approach in
several experiments carried out with different users and in
environments of different types.

I. INTRODUCTION

The problem of localizing and tracking people has recently
received substantial attention in the robotics community a
knowledge about the current position of a person and his or
her activity allows a mobile robot to improve its services g)
to its users. For example, the robot can better anticipaigy. 1. Human activities like opening a door (top left and tigire used
future actions of the person. Additionally, knowledge abouo detect loop closures. Given this information, the purenoelmy (a) can

; ; corrected (b) leading to a consistent trajectory. Basethis corrected
the environment and the location of people can greatly;ometry and the knowledge about the location of individuabrd, an

support search and rescue missions in emergency situatiof$yroximate map of the environment can be calculated (c). Higte,
Consider, for example, firefighters in a building enclosetlue/gray squares indicate the location of individual dod laser based

by smoke and fire. If a map of the environment can b&ar of the same environment is shown in (d) for comparison.

operator or automated system can re-route the people to g, top images of Figure 1 depict a person wearing the Xsens

exit in case of an emergency. Alternatively, one could usgata suit (left) and the posture estimated by the software
the map of the environment to more intelligently coordinat@ejivered with it (right).

the actions of the rescue workers to more effectively search We present an approach that is able to learn the motions

the environment for potential victims and at the same timSarried out by a human during handling a door with either
reduce the time the rescue workers are exposed to poten% left or the right hand. This learned motion is then used
threats. , _ to detect door handling events and at the same time to
In this paper, we consider the problem of simultaneouslygimate the location of doors while the human is walking
festlmatlng _the trajectory of a person Walkln_g through a'ihrough the environment. We then apply a graph-based
indoor envm_)pment and the map of the environment. Oug| Am approach that uses the odometry estimated by the
approach utilizes the movements of a person as well §§s and the landmarks corresponding to the door handling
door handling activities to reconstruct the trajectory I t oot tg estimate the true path of the person. To deal wth th
person as well as the map of the environment. The estimatiQ responding data association uncertainty in the landmar
is carried out based on data recorded with an Xsens dgj@(ermination, we apply a multi-hypothesis scheme. After
suit, which is equipped with 17 inertial measurement units, o jating the path of the person, we utilize the pose of the

(IMUs), worn by a human. This data suit records full bodyegtimated doors to calculate an approximate two-dimersion
postures of the person and in this way allows for a pred|ct|o|qlalo of the environment.

of the motion as well as for the identification of unique and

The paper is structured as follows. After discussing relate
Department of Computer Science, University of Freiburg, np WOrk we briefly describe the algorithms used for learning
Freiburg, Germany and detecting the motion for handling a door. Section IV re-



views the multi-hypothesis tracker for sensors providintyo  a) £ ﬂﬂﬂ@_

positive feedback, especially the expressions to caleuket

hypothesis probabilities. Section V describes how we deted) f mwm

potential loop closure candidates and our overall system. |

Section VI we present our experimental results based on re@b fi -mmwm
f,
t >

data recorded by different people walking inside and oetsid

of various buildings. Fig. 2. A synthetic example: Given two examples (a) and (b) efshme
motion walking The featuresf;, f are 1 (white) iff the left/right foot is
Il. RELATED WORK in front of the body and O otherwise. The resulting merged tetapls
. . . .. depicted in (c). Here, gray areas indicate the véiue meaningdon't care
The problem of human indoor navigation and localizatiomtuitively, the matrix can be interpreted through the faling sectionsfeet

has recently become an active research field [6], [12parallel, right foot in front, feet parallel, left foot in dnt, feet parallel
[7], [2]. A number of different sensors are employed as;

. . o i he key idea of the work by Mler et al. is to use simple
well as different kind of localization techniques were use - :
i : . : oolean features likeight hand is above headnd create
One of the first works in this area is the one by Lee

more expressive features (motion templates) by conjumctio
and Mase [6], where wearable accelerometers and oth . . .

: - ) of the simple ones. Givelf of those features and a motion
sensors, like a digital compass and a velocity sensor, were . ) .
employed to recognize when humans perform specific asequence of lengti this leads to a matrix of siz¢ x K.
-mploy ecog . P P Kiote that each entry of this matrix is either 1 or O indicating
tivities and switch between indoor locations. They intégra

. : .. this feature being active or not at the specific time and
the accelerometer data over time to localize humans with . .
. . . . . that the sequence lengthl can in general be different
a known environment, using higher level descriptors lik

standing - 2 steps north - 40 steps eastetc. The field Tor each mot|or_1 sequence. Consider for exa.mplle the two
. L N featuresf;, f. with f; indicating the left foot being in front
of indoor navigation and localization is therefore closel

y L . .
related to activity recognition using accelerometer dHth. of the body and/, active if the right foot is in front

[10] present approaches to predict certain low level d@twi of the body. leen_thls set of features, a typical walking
; . ) : . ) template for two different sequences of the same length
like walking , standing, running, sit-ups, and otharsing

purely extracted features from raw accelerometer data aﬁamd look like Figure 2(a) and (b). The learned template

a variety of different learning algorithms. However, they d given these two examples is depicted in Figure 2(c). Here,
y o ning aig - FIOWEVET, They 0 1) 2ck and white correspond to 0 and 1 respectively. The gray-
not employ this information for indoor positioning. In [12]

the authors utilize an accelerometer together with anrieéra shaded boxes account for the fdl:f)_ meanlngdont_cgre
roximity sensor mounted on a pair of headphones to det(::'\c/Iore formally, let¢' denote a motion class consisting of
P y P P s templates MT ... MT; indicating the same motion. Each

when a human is passing through a doorway. In this work, tqgmplate MT is described by a matrix of sizé x &, and

authors are able to c_onstruct topological maps, where rooms eight vector; with o (k) being the weight of thé:-th
are represented by single nodes and edges represent the pa o . o2 .
) o olumn. Initially, we set all weights td indicating each time
in steps between doorways. For building these maps and for . :

: g tep to be equally important. The learning of a class reteren
detecting loop closures, the human user has to indicate

gesture which door was passed, i.e. giving each doorauniquemplate CT is done performing the following steps. First,

; ” . . . o . we select a template MTirom the classC' and use it as a
identifier via the infrared proximity sensor. Within this ma . : .
S . referenceR. We then compute an optimal alignment of this
the approach also allows for localization based on Bayesian
filtering. HeadSLAM by Cinaz and Kenn [2] employs a Ialserreference template to all other templates from the sams clas
9. y ploy utilizing Dynamic Time Warping (DTW) [9]. We alter the

scanner together with an IMU mounted on a helmet. The Urrent motion template MT(which was aligned t?) in the

use the IMU sensor to be able to project the laser scans i Qowi .
a horizontal plane in a global coordinate system and empl Ollowing way. Givenn columns of the reference template
, hamely R(k),...,R(k + n — 1), are matched to one

a modified GMapping [5] implementation, by incorporatingColumn of the current template MT1), this column MT, (1)

a S|mplg motion model W|th_e|ther a_flxed speed assumptlolrs1 duplicatedr times having the new weight(l) /n. In case
for walking or no speed while standing.

one columnR(k) is matched ton columns of MT;, namely
[1l. M OTION TEMPLATES MT;(),...,MT;(I+m—1), thesem columns are averaged

Since beside the current pose of the body segments é@ultlphed by their weights) to one with the new weight

. T . eing the sum of these columns’ weights. This process is
further information is available, we need to track those .

. . T . . calledwarping Now, that each MT has the same length as
motions in order to detect activities likepening/closing a . .

. . o . . the referenceR, we calculate in the second step a weighted
door. Without this additional information we can not detect
loob closures and we can onlv generate an approximate m%verage template from all templates based on the columns

P y9 PP and their associated weights. Consequently, this steplésica

based on the current odometry. This, however, would Ieaaveraging In the third step, calledinwarping we stretch

to an inconsistent map due to small errors accumulatmiqu contract the resulting template so that all but evelytual

over time, as shown in Figure 1(a). We therefore propo ; . .
to detect the motion used for handling a door based (S)tﬁe last column have a weight af In this case, given the

motion templates MIT) as proposed by Kiler et al. [8]. weight of a columna(k) < 1, we merge this column with




subsequent ones until the weight lis In case the weight sensor is called a "type 2" sensor. There, any measurement
of a columna(k) > 1, we duplicate this column into two can be either detected (assigned to an existing track),edark
columns, one with weight and the second with weight as a false alarm or as a new track. Since in our particular
a(k) — 1. The process is then repeated for the next columiase the tracks are static doors, we will call them doors
We repeat the whole procedure of warping, averagingn the remainder of this section, rather than tracks. As
and unwarping for all templates MTwhere every template described in Section Il we select a threshold for detection
once is the reference templale After this step, we replace in such a way, that we do not have to model false positives.
all templates by the outcome of the procedure when thiBherefore, a measurement can only be interpretetbtected
template was the referencl. Since the selection of the (when matched to an existing door) or amew door In
reference R induces a bias on the learned template, werder to derive the probabilities of individual measuretmen
iterate the whole procedure until no major change betweassignments we briefly reconsider the formulation of the
the different templates exists. The outcome of this algorit Multi Hypothesis Tracker for type 2 sensors.
is the class template CT. Note that due to the stepging, Let Qf be thej—th hypothesis at timé ande}’(‘ji the parent
averagingand unwarpingthe values of the resulting matrix hypothesis from whicm;? was derived. Let furthed; (k)
are nowe [0, 1] instead ofe {0,1}. The final step therefore denote an assignment, that based on the parent hypothesis
consists of changing each entry of CT into either 0, D.6r QF~! and the current measurement gives rise toﬁé‘ The
with 0.5 indicating the flagdon't care We achieve this by assignment set; (k) associates the current measurement
selecting a thresholg and changing each entry t given  either to an existing door or a new door. Given the probapbilit
its current value< ~. The value is altered td if it was  of an assignment and the probability of the parent hypashesi
> (1 — ) and set to0.5 otherwise. In all our experiments o*"1 e can calculate the probability of each child that
we sety to 0.1. An example of such a template is depictechas been created through; (k). This calculation is done

in Figure 2(c). recursively [11]:

Now, given the learned class template CT and a new
motion sequence, we can calculate a similarity between(2}lzx) = p(W;(k), Q5 2k)
both. Therefore, we align the motion template of the actual Bayes+ E—1 E—1
sequence to CT via DTW. We obtain a score between both varkon  TPUERIW5(R), S IpCV; (R) 12 5)) -
templates by dividing the amount of mismatches by the p(Q];(_j;). (1)

number of used cells (i.e., the cells being either 0 or 1).
Given this score is below a threshotd the actual motion The rightmost term on the right-hand side is the recursive
sequence is said to belong to the motion class CT. term, i.e., the probability of its parent. Factgris a nor-
Since we are only interested in the motion used fomalizer. The leftmost term on the right-hand side after the
handling a door with either the left or the right hand we us@0rmalizern is the measurement likelihood. We assume that
features based on the pose and velocity of the hands onfymeasurement,. associated with a doof has a Gaussian
Intuitively, we use a set of features describing whether thadf centered around the measurement predictiprwith
hand is at the level of the door handle, whether it is raisingpnovation covariance matrig;, N(zx) :== N (2 ; £, SY).
hold still or lowered, and finally whether the hand is movingi€re, the innovation covariance matrix is the uncertainty
towards the body or away from it. We learned the templatef the door w.r.t. the current trajectory and is described in
for the activity handling a dooy which consists of the four Section V. We further assume the pdf of a measurement
subclassespen left, close left, open right, close righising belonging to a new door to be uniform in the observation
10 examples from a training data set for each subclass. Bas&dume V' with probability V=". Hence, we have
on a second validation data set, we selected the threshold k—1y sy76—1
T = 0.25 for detecting the motion. Using this threshold, we Pl W(k), @) = Nz Ve, @
did not encountefalse positiveson the validation data set. with § being 1 if and only if the measurement has been
Although the features used for detecting a door are quitgssociated with an existing door, 0 otherwise. The central
simple, we can reliably detect the timestamp when the dotgrm on the right-hand side of Equation (1) is the probapilit
handle was touched within5 seconds of the true timestamp of an assignment sqﬁ(\Ifj(k)m’;(*j;), which is composed of
(i.e., manually labeled ground truth). Therefore, we caw nothe following two terms: the probability of detectign,,,«
use the pose of the hand as an approximation of the locatiand the probability of a new door. In our case the probability
of the door. Given this algorithm we are able to detect whepf detection is equal to choosing one of the current caneidat
we toucheda door, but not which one. We therefore have tadoors, i.e., all doors within an uncertainty ellipsoid. Tée
take care about possible data associations, which is 8escri fore, p,.,x = NC(xi.x, Ql;_jl)fl’ with NC(xy., Q];(_j;)
in the next section. being the’number of door candidates, assuming the trajector
X1., Within the world Q’;*jl. Assuming the number of new
doors following a Poisson distribution with expected numbe

In this section we review the Multi Hypothesis Trackerof doors\,,.,,V in the observation Volum& we obtain
(MHT) as described by Reid [11] for sensors providing only

positive feedback. In the original paper by Reid, this type o p(U;(R)Q) = pgetf (1 =05 AnewV)  (3)

IV. MULTI HYPOTHESISTRACKING
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Fig. 3. A snapshot from our experiment which is described iitlen Section V. (a) The human re-enters the building thtodgor AO. Based on the
MHT decisionnew doorand match with AQdifferent hypothesis are generated (b) and (c). The prdibabiof the hypothesis are depicted in (d).

where p(n; AV) :=

is the Poisson distri- been perceived before. We therefore utilize multi hypdthes

(AV)™ exp(AV)
|

bution for n events given the average rate of eventslis
Therefore, Equation (1) can be reformulated into

p(Q|z) =
Bay_eer
]Wa?kov

PO, (k), 2 )

0Dk 05 (), QL (L, (k) QL -
P )
= N VT P Onew V)0
exp(AnewV)(1 = 0)!'p(Qh ). (4)
Observing thaf1 —4)! is always 1 (sincé is € {0,1}) and
noting thatexp(A,., V') can be taken into the normalizer
we can finally rewrite Equation (4) into

§
P(Qﬂzk) = 77(/\/'(21@)10(1@15_’;) ~/\711§£~p(Q’;(*j§). (5)

Up to now, we can reliably detect doors and calculate ti‘\?’
probability of a data association. In the next section w
address the remaining questions during our simultaneo
localization and mapping procedure, namely the detection

possible door candidates (i.e., loop closures), the caticul

of the innovation covariance and the algorithms which wer

utilized in order to correct the trajectory.

V. SIMULTANEOUS LOCALIZATION AND MAPPING

tracking as described in the previous section for all pdssib
outcomes. To detect a potential loop closure (i.e., re@agni

a previously seen door), we identify all former doors which
are within the uncertainty ellipsoid of the current pose by
a Dijkstra projection of the node covariances starting from
the current position. The innovation covariance is disectl
used for calculating the likelihood of the door as described
in Equation (5). All doors being within the 99.9% confidence
region of the current pose are considered as potential loop
closure candidates, and together with the possibility of
the current detected door beingnaw door give raise to

n + 1 different outcomes, given the number of loop closure
candidates is:. For each of these association possibilities
we create a separate graph, encode the selected constraint
and optimize it. The multi hypothesis tree therefore grows
exponentially in time and pruning of this tree is mandatory
in order to keep computational costs reasonable. In our, case
e utilize N-scan-backpruning as proposed by Cox and
ﬁingorani [3], which works as follows: The N-scan-back
H?gorithm considers an ancestor hypothesis at time N

8nd looks ahead in time to all its children at the current
time k (the leaf nodes). The probabilities of the children
Sre summed up and propagated to the parent node at time
k — N. Given the probabilities of the possible outcomes at
time k£ — N, the branch with the highest probability at time

. L .k is maintained whereas all others are discarded. Since in
We address the simultaneous localization and mapping, - .ace 2 step in the MHT only arises when a door has

problhem by itstgra%hD bé\sed for;ntuhlatir?n. A node in thg,oon detected, this is identical to locali2é steps ahead
graph represents a 3DoF pose of the human pose (i.e., ﬁ Ctime (at door level). An example of this approach is

center of the hip) or the 3DoF pose_of a doo_r and Aisualized in Figure 3. This example shows a snapshot of
edge between two nodes models a spatial constraint betwe(%‘b experiment which is described in detail in Section VI.
them. These spatial constraints arise either from incréahen

q t by detecti iouslv ob dd At the specific timet, the human walked around the builing
odometry or Dy detecling a previously observed door ("er aving at the top exit and entered the building through the

by opening/closing it). In our case, the edges are label ain entry labeled A0 in 3(a). Starting from the pose

with the_ relat|v_e mot_|on between two nc_)des. To Co_mpm‘i?vhere the current door was detected, the uncertainty of the
the spatial configuration of the nodes which best satisfy t ose was back-propagated utilizing Dijkstra expansioncsi
constraints encoded in the edges of the graph, we utili

. : R . e used the same uncertainty forand y, the resulting
stoghgstlp gradient descent optimization [4]. Perfornthig ellipsoid is a circle. Note that due to the back-propagatibn
optimization Wheneve_r a (_Jloor has been detecte_d allows tve uncertainty the current pose is in the uncertainty regio
to reduce the uncertainty in the current pose estimate.

Sj I able to detect the fact that th of the door AO. For better visibility, only the doors being
_ ~ihce we are only able fo detect Ine tfact thatl Nerg.,,qiqered as candidates are shown with their uncertainty
is a door, we have to track different possibilities of dat

L ) ‘?‘egions. Therefore, only two data associations are passibl
association, namely whether the current detected doords O this case namely matching the current door with AO

of the already mapped doors, or whether the door has not
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which in this case is the correct association, or marking t33 doors. The pure odometry is shown in Figure 4(a). In
as a new door. Calculating the posterior probability of eacthis experiment, the raw odometry is already good, since
association leads tp = 0.597 for the casenew doorand we intentionally omitted walking around tables and chairs
p = 0.403 for the correct association. A maximum likelihoodwhich would result in high pose errors due to magnetic
approach therefore selects the wrong association. Howevdisturbances. Therefore, a variance of 0.03 m per meter and a
as the human enters the building and opens another dobrscan-back of 7 were sufficient to correct the odometry. We
given the previous association, different possible oue®m have chosen\,.,, = 0.04 since this value is approximately
are possible. Figure 3(b) depicts the situation for the casibtained by dividing the number of doors by the area covered
that the previous decision wasew doorand Figure 3(c) through the doors. Note, that although.., is dependant on
shows the situation for the decisionatch with A0 Given the building the human is operating in, small changes will
this sequence of doors, the full posterior of the bramziich not alter the final outcome. However, if operating in a hotel,
with AOat time¢ sums up td).6317 while the probability for A,.,, should be siginifcantly higher than if operating in a
the branch fonew doorsum up t00.3683 (see Figure 3(d)). warehouse. Based on the detection and tracking of individua
Here, a N-scan-back of 2 would be sufficient to keep tracloors, the map was corrected as depicted in Figure 4(b).
of the correct data association, since the MHT would deciddote that we show the maximum likelihood map of the multi
to keepmatch with ACat timet and discard the other branch. hypothesis tracking only. Given the free space traversed by
The output of this approach can be used to generate #re human and the knowledge that doors separate rooms, we
approximate map of the environment. Assuming that dooian enlarge the current trajectory up to a threshkiold 2.5 m
separate rooms, we can cut the trajectory based on tteseek for walls, i.e., build a Voronoi diagram, based on all
locations of individual doors. Each segment now containgoses within a room (see Figure 4(c)). The resulting map of
all points belonging to one room only. Given the orientatiorthe inner part is depicted in Figure 4(d). For comparison we
of a door we can merge subsequent segments which are bettlarged the indoor part of this experiment and compared it
connected to the same door and on the same side. In ordettaca laser map, which is shown in Figure 4(e) and Figure 1.
seek for walls, we can furthermore enlarge the trajectoty un The second experiment contains a trajectory of approxi-
it touches a trajectory belonging to another room or up to mately 1.3km and was obtained by walking inside a uni-
thresholdd, which was set t@.5m in all our experiments. versity building containing several seminar rooms. Here, w
An outcome of this process is shown in Figure 4(c). intentionally walked closely around rows of tables and hai
The magnetic disturbances led to a high pose error, as can
be seen in the raw odometry (see Figure 5(a)). We therefore
We evaluated the approach described above on diffemsed a high variance of 0.2m per meter to make sure that the
ent data sets utilizing the motion of two humans invariance is not over-confident. Although the initial odorget
cluding walking inside and outside of various build-differs up to 30m for the same place, we were able to correct
ings. Videos of each experiments can be found oitas shown in Figure 5(b). The map obtained by our approach
the web hOttp://ais.informatik.uni-freiburg.de/projects/mvn is visualized in Figure 5(c) and a floor plan of the same
They show the incremental update of the final best hybuilding is depicted in (d). In this experiment we detected
pothesis. Our current system, though not optimized, is ab#dl 63 doors up to an accuracy of 0.5 seconds wrt. a manually
to perform an incremental update at a rate of 10Hz olabeled ground truth.
a state-of-the-art desktop computer. The first experiment The third experiment contains a trajectory of a person
contains a trajectory of approximately 1.6 km including 133vho is about 20cm taller than the person whose motions
door actions and is depicted in Figure 4. Given the learnadere used for training the templates. The parameters used
motion templates, we were able to detect 125 out of th® correct this trajectory were the same as for the second

VI. EXPERIMENTS
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Fig. 6. The third experiment containing the motion from a d#éfe person. The raw odometry and the corrected trajectasgdan our approach are
depicted in (a) and (b) respectively. The calculated apprate map is shown in (c) and a floor plan of the same building isctEpbin (d).

experiment. The outcome of this experiment is shown in[2]
Figure 6. Here, 24 out of 27 doors were detected.

VII. CONCLUSIONS [3]

In this paper, we presented a novel approach for approx-
imate mapping of indoor environments using sensed human
motion. Our approach considers the trajectory of the persoﬁ”
as motion constraints and door handling events detected
using specific motion templates as landmarks within a graph-
based SLAM approach. To cope with the high data asso-
ciation uncertainty, we employ a multi-hypothesis tragkin
approach. Our approach has been implemented and tested on
real data acquired by people walking inside and outside o
various buildings. The experimental results demonstize t [7]
our approach is able to robustly keep track of the true data
association and accurately estimate the trajectory taken b
the person. Additionally, we can create approximate maps of]
the environment which accurately resemble the true layouts

g
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