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Abstract— We present a system for 3D place recognition and
object detection using a small-sized quadrotor. The robot is
equipped with a horizontally scanning 2D range-scanner and
occasionally acquires 3D scans by hovering on the spot and
changing its altitude. Our approach is able to accurately and
robustly recognize previously seen places of the environment.
Additionally, our system can be applied to match the current
observations to models stored in a database which allows the
robot to perform object detection. We evaluate our approach
in real-world experiments to demonstrate the robustness and
reliability of our algorithms.

acquired a 3D scan by hovering around the spot while changnaititude.
. INTRODUCTION Two chairs were found and their estimated 6DoF locations &nealized.

Place recognition, meaning the detection that a robot+evizn a pan-tilt unit. We then match the features of the current
ited an already known area, is a crucial part in key navigati®D scan acquired by the flying robot with features stored
tasks including localization and SLAM. The majority of gat in a database (representing the objects). Figure 1 shows an
of-the-art place recognition techniques have been degdlopexample of our system used for object detection. Again, the
for vision- or two dimensional range data. Relatively fevgquadrotor acquired a 3D scan by hovering around the spot
approaches work on three-dimensional laser range scans and changing it's altitude. The image shows the accumulated
can efficiently calculate the similarity or the relativertsfor- 3D scan together with the outcome of our object detection
mation between two scans. Even more, most place recognit@pproach. In this example, we search in the scene for thetobje
and object detection algorithms have been specially suitéghair”. The two chairs present in the scene are overlayed by
for ground robots. However, 3D scans gathered with aerihle objects detected by our approach. Since we estimate the
vehicles equipped with a 2D laser scanner typically havelecation of the corresponding objects as well, this allowtais
substantial higher noise in the measurements than in the cadd the high density models from the database to the current
of ground robots. The main reason for this is that the poS8® scan.
and orientation of the flying robot can be affected by high
variations during the measurement acquisition.

We present a robust place recognition system operating on Il. RELATED WORK
3D range data which can be used with data gathered by a
wheeled as well as a flying robot. The flying quadrotor robot is In the past, the problem of place recognition has been
equipped with a horizontally scanning 2D laser range saann@ddressed by several researchers and a wide variety of ap-
an IMU, and a laser mirror which is used to deflect some of thgoaches for different types of sensors have been developed
laser beams along thedirection, i.e., providing measurement§cameras are often the first choice. Compared to 3D data,
about the robot’s altitude. Our navigation system estimateision features are typically very descriptive and uniqOe.
the current pose of the quadrotor by projecting the curreifie other hand, spacial verification is naturally easiern 3
measurement on a 2D plane (using measurements about #gfia. One very successful approach using vision is the Featu
and pitch from the IMU). This allows us to use efficienfAppearance Based MAPping algorithm (FABMAP) proposed
2D scan-matching algorithms for pose estimation. Togethy Cummins and Newman [4]. This algorithm uses a bag-of-
with the estimate of the global height and the robot’s attitu Words approach based on SURFs [2] extracted from omni-
(IMU), we then project the 2D measurements into 3D. directional camera images and was shown to work reliably

The quadrotor records a 3D scene by hovering around tB¢en on extremely large-scale datasets. We would like & ref
spot while changing it's altitude. Our approach transforni§e reader to this paper for a detailed discussion of vision-
this 3D range scan into a range image and uses matchésed place recognition approaches.
between point-features to estimate relative poses, teahan Laser scanners, either 2D or 3D have been also employed
individually scored. The same principle can be used foraibjefor object and place recognition purposes [9, 3, 14, 6, 5, 8],
recognition. Here, we first acquire high density object ni®debut we would like to refer the reader to [11, 12] for a detailed
using a wheeled robot equipped with laser scanner mountidcussion about related work wrt. laser scanners.
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Fig. 3. Left: 2D map generated by the quadrotor. Given the nreasents
about roll, pitch and the estimated altitude we then projeetrheasurements
into 3D to create the 3D point cloud shown in the bottom rightge. The

Fig. 2. Our quadrotor robot used in this experiments. Thefqtatis based top right image shows the corresponding range image.
on a Mikrokopter [1] and is equipped with a Hokuyo URG (1), aBexXs . . . . .
MTi IMU (2), a Gumstix embedded computer (3), and a laser mirryr (4  into 3D, given the 3D pose estimate of our navigation system.

In the remainder of this section, we will call such a set of
measurements acquired while hovering around a spot a 3D
We use the quadrotor platform shown in Figure 2 to acquisean of the environment. During the quadrotor’'s mission, th
3D scans and use them to recognize previously seen partgatfot continues to acquire such 3D scans. These are then
the environment. In this section we discuss how the scastored in a database. However, the database can also contain
are obtained and present our algorithm for place and objdigh density models of single objects like chairs record@t w

recognition. a different platform not necessarily a flying one.

Ill. TECHNICAL SECTION

A. Acquiring a 3D Scan of the Environment B. Place Recognition

The quadrotor acquires a 3D scan by hovering around aGiven a database of 3D scans and a scan as input query, our
desired spot and changing it's altitude. To obtain a 8@)° algorithm returns a set of scans which are potential matches
scan, we turn byl80° and repeat the process. The choice dFith the input. The database consists of measurements of the
the place where to acquire a scan can be triggered manu&Ryironment previously recorded by the flying robot. These
(e_g_, by pressing a button), or by incorporating an exr[jimna measurements could have been recorded during the same
behavior into the robots navigation system. However, ocngo Mission or in a previous one. Additionally, our approach
is on how to extract 3D data from the robot and on th@alculates for every returned scan pair (i.e., query scah an
algorithms for place/object recognition. We thereforetayd mMatched scan from the database) a transformation and a score
all measurements by manual flights. reflecting how certain the system is, that the two scans lgtua

The robots navigation system estimates a full 3D pogeatch.

(i_e_, (x7y’z7¢79’w)) by means of 2D laser scan matching_ More forma”y, let D denote the database of 3D
In more detail, we use the current measurement about réinge measurements and a query scan. The goal of
(¢)) and pitch ¢) from the IMU to project the current laserour approach is to calculate a set of candidate pairs,
measurement onto a 2D plane. We then employ hierarchi€d(z*) = ((z1,T1,51),...,(zn, Ty, sn)). Here,z; € D,i €
correlative scan matching similar to the one proposed Hy---,n},n =|D|, are the potential measurement candidates
Olsonet al.[10] to estimate the incremental 2D transformatioffom the database which are similar to the current query
((z,y,7)). To get an accurate estimate of the robot’s pos¥/hereasl; denotes the estimated transformation fremto

we employ a grid resolution of.01 mx0.01 m at the finest zi, si is a score reflecting the confidence about the match.
resolution of the grid map. The laser beams deflected by tRIr algorithm for calculating”'(z*) mainly consists of the
laser mirror are used to estimate the current global atituépllowing steps.

(even in the presence of obstacles underneath, see [7] fol) Generate a list of possible scan-pairs. This list could
more details). Together with the IMU measurements of roll be obtained using for example a bag-of-words (BoW)
and pitch we now obtain an estimate of the full 3D pose of  approach for a fast pre-selection [12]. However, in our
the robot. A 3D measurement consists of all measurements case the databasP of previously acquired scans is
taken while the robot hovered around a spot (i.e., within a  typically small. In such scenarios, using BoW is com-
region). Additionally, we require a substantial varietytfre putationally more intensive than checking all possible
altitude during the scan (i.e., having at least a variatibn o candidates. We therefore calculate a list of all pairs,
1m). An example of such a scan is shown in Figure 3. The  (z*, %), %, € D(z%).

left image depicts the 2D map build from the measurements.2) For each paifz*, 2;), 2, € D,k =1,...,|D|, calculate
This map was used to determine the pose of the robot. The a set of possible transformations betweg¢nand 2, by
right image shows the corresponding measurements prdjecte  matching point features of the corresponding scans.



3) Score each of the possible transformations and get theObject Detection

transformatioril, with the highest score;. If this score  oyr approach for object detection is similar to the one of
is above an acceptance threshold thep, T, sk) IS place recognition. Again, we have a databddecontaining
a candidate for a recognized place, i.e., it is added fodels of specific objects. These models were previously
C(z). acquired by a different robot by merging multiple scans of
Although we work with a database of 3D range scans, vike object from different perspectives.
do not use this data directly. We rather represent each-threeTo detect an object in the current measurement we match
dimensional range scan by its dual, namely a range image (b&&RF features against the object features from models in
Figure 3 (top right)). If the 3D scan is captured from one poithe databaseD similar to the case of place recognition.
in space, i.e., the sensor does not move while the 3D poiats blowever, the main difference between our algorithms for
generated, the range image contains the same informatiorohfect detection and place recognition comes from having a
the scan. Although this assumption is violated to some @egrfelll 3D model of the corresponding object. Given a candidate
when using flying vehicles, we will still use the range imagdtansformation, i.e., the expected position and orieotatf
as they allow us to model unknown areas as well as maximuhe object obtained from the matched NARF features, we can
range readings more efficiently. calculate an expected range image of the object. This allows
We will now briefly describe the individual components of!S to compare this range image to the one obtained from the
our approach. More details about specific parts can be fouglgrent scan pixel by pixel.
in [12]. Again, based on our observation model, we calculate a score
for each candidate (object and transformation). An objsct i
detected in the environment, if the corresponding score is
above a given threshold.
To calculate a similarity between two scans, we first calcu-
late a set of features representing the scan. Our approash us IV. EXPERIMENTS
the so-called NARFs (Normal-Aligned Radial Features) [13] This section provides our experimental results. We wilkfirs
recently developed for robust object recognition based Dn 3how our results for place recognition. Subsequently, we wi
scans. These point features are used to find correspondiiegnonstrate our first results on object detection.
regions between two 3D measurements. The descriptors OfPIace Recognition
the features can be compared using standard norms like the J

C. Feature Extraction

Manhattan distance. The resulting measure @dseriptor dis- In the following experiment we manually flew the quadrotor
tance) describes the similarity between the described regiorgveral times in an office environment. The whole set camsist
Here, a high value reflects a low similarity. of 23 scans obtained in four distinct runs. The overall 3D

map using our navigation system is shown in Figure 4. The
individual places where the quadrotor recorded a full 3D
scan are highlighted by the labels...,23. The blue part
Each NARF encodes a full 3D transformation. Thereforef the rectangles in Figure 4 are pointing forwards wrt. to
the knowledge about a single feature correspondence betwdee quadrotor. Figure 4 (top right) shows the ground truth
two scans enables us to retrieve all six degrees of freedomcofifusion matrix of the individual scans. Here, dark areas
the relative transformation between them (i.e., by catoua reflect a high similarity between the corresponding scahs. T
the difference between the two poses). To obtain the candénfusion matrix estimated by our approach is shown in the
date transformations, we order the feature pairs accordingbottom right together with a plot of the recall rate versus
increasing descriptor distance and evaluate the transtions the distance of individual scans. For example, for all scan-
in this order. In our experiments we stop after a maximupairs which were recorded at most 1 m from each other, our
number of 2000 evaluated transformations for computatiorspproach correctly recognized all loop closures. Subsstyle

D. Determining Candidate Transformations

reasons. for all scan-pairs which were at most 2m apart from each
other, our approach still was able to correctly recognizeuab
E. Scoring of Candidate Transformations 73% of all potential loop closures. Note that the recall rate

drops quickly starting from 3m on. This originates from the
R The reAsuIt of the feature matching is a list of relative poséact that the laser range scanner has a maximum range of
Ty, = {Tk,,...,Tk,} for the candidate pai(z*,Z),Zx € 5.6m. In this case, scans which have been acquired 3m apart
D(z*). In the next step, we evaluate those candidate tragom each other only have a very limited overlap.
formations and calculate a score (likelihood) for eathe ) )
T, reflecting the confidence of the transformation given B Object Detection
model of our sensor. Since we use 3D range data, i.e., eacfio get some initial results for the object recognition pro-
measuremert is a set of 3D points, we evaluate the candidateedure, we used the quadrotor platform to capture five 3D
transformatiori” on a point-by-point basis (i.e., we assume thecans in an office environment, where several instances of a
points are mutually independent). chair of which we obtained a full 3D model were present.
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Fig. 4. Our quadrotor acquiredis0° 3D scans at 23 distinct positions. The i
positions where the quadrotor acquired are labéled ., 23. Note that Figure 3 s
headed towards the front wrt. to the quadrotor. The groumith ttonfusion matrix is shown in the top right, the one compugadur system is in the bottom
right, together with a graph showing the recognition ratediéferent maximum distances between scans.

Using a minimum acceptance threshold that returned zese fal
positives, we were able to find abotd’% of those chairs. See |4
Figure 1 for an example. For lower acceptance thresholds thej2]
are a number of false positives where the system assumes tE?
the chair was seen from the back. From this perspective ?f
presents mostly a flat surface of a certain size, which is hard
to distinguish from other flat structures in the environment4l
Our plan is to achieve higher recognition rates by using af)
active exploration strategy and tracking found objectslunt
they were seen from more then one perspective to achieve
higher recognition rates and remove false positives riegult [6]
from views that provide little distinctive structure.

V. CONCLUSIONS [7]

We presented a novel approach for robust place recognition
using data acquired from a flying vehicle. Additionally, wejsg]
present a variation of our approach used for object detectio
Our quadrotor acquires 3D scans of the environment bpé]
hovering around a spot while changing its altitude. Thos@sc
are matched against a database containing previouslyradqul10]
scans of the environment as well as models of different ¢djec
Our system has been implemented and successfully tested. {fiy
experimental results demonstrate that our approach istable
robustly recognize previously seen parts of the envirorime
Our first results also imply, that our approach can reliably
detect known objects in the environment. In future work, we
aim to combine the object detection approach with an acti

exploration technique.
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mage shows the camelipg 3D map using our navigation system. The
hows the scan taken at position 14. Heeeblue part of the rectangle is
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