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Abstract— We present a system for 3D place recognition and
object detection using a small-sized quadrotor. The robot is
equipped with a horizontally scanning 2D range-scanner and
occasionally acquires 3D scans by hovering on the spot and
changing its altitude. Our approach is able to accurately and
robustly recognize previously seen places of the environment.
Additionally, our system can be applied to match the current
observations to models stored in a database which allows the
robot to perform object detection. We evaluate our approach
in real-world experiments to demonstrate the robustness and
reliability of our algorithms.

I. I NTRODUCTION

Place recognition, meaning the detection that a robot revis-
ited an already known area, is a crucial part in key navigation
tasks including localization and SLAM. The majority of state-
of-the-art place recognition techniques have been developed
for vision- or two dimensional range data. Relatively few
approaches work on three-dimensional laser range scans and
can efficiently calculate the similarity or the relative transfor-
mation between two scans. Even more, most place recognition
and object detection algorithms have been specially suited
for ground robots. However, 3D scans gathered with aerial
vehicles equipped with a 2D laser scanner typically have a
substantial higher noise in the measurements than in the case
of ground robots. The main reason for this is that the pose
and orientation of the flying robot can be affected by high
variations during the measurement acquisition.

We present a robust place recognition system operating on
3D range data which can be used with data gathered by a
wheeled as well as a flying robot. The flying quadrotor robot is
equipped with a horizontally scanning 2D laser range scanner,
an IMU, and a laser mirror which is used to deflect some of the
laser beams along thez direction, i.e., providing measurements
about the robot’s altitude. Our navigation system estimates
the current pose of the quadrotor by projecting the current
measurement on a 2D plane (using measurements about roll
and pitch from the IMU). This allows us to use efficient
2D scan-matching algorithms for pose estimation. Together
with the estimate of the global height and the robot’s attitude
(IMU), we then project the 2D measurements into 3D.

The quadrotor records a 3D scene by hovering around the
spot while changing it’s altitude. Our approach transforms
this 3D range scan into a range image and uses matches
between point-features to estimate relative poses, that are then
individually scored. The same principle can be used for object
recognition. Here, we first acquire high density object models
using a wheeled robot equipped with laser scanner mounted

Fig. 1. Object detection using 3D data acquired by our quadrotor. The robot
acquired a 3D scan by hovering around the spot while changingits altitude.
Two chairs were found and their estimated 6DoF locations are visualized.

on a pan-tilt unit. We then match the features of the current
3D scan acquired by the flying robot with features stored
in a database (representing the objects). Figure 1 shows an
example of our system used for object detection. Again, the
quadrotor acquired a 3D scan by hovering around the spot
and changing it’s altitude. The image shows the accumulated
3D scan together with the outcome of our object detection
approach. In this example, we search in the scene for the object
“chair”. The two chairs present in the scene are overlayed by
the objects detected by our approach. Since we estimate the
location of the corresponding objects as well, this allow usto
add the high density models from the database to the current
3D scan.

II. RELATED WORK

In the past, the problem of place recognition has been
addressed by several researchers and a wide variety of ap-
proaches for different types of sensors have been developed.
Cameras are often the first choice. Compared to 3D data,
vision features are typically very descriptive and unique.On
the other hand, spacial verification is naturally easier in 3D
data. One very successful approach using vision is the Feature
Appearance Based MAPping algorithm (FABMAP) proposed
by Cummins and Newman [4]. This algorithm uses a bag-of-
words approach based on SURFs [2] extracted from omni-
directional camera images and was shown to work reliably
even on extremely large-scale datasets. We would like to refer
the reader to this paper for a detailed discussion of vision-
based place recognition approaches.

Laser scanners, either 2D or 3D have been also employed
for object and place recognition purposes [9, 3, 14, 6, 5, 8],
but we would like to refer the reader to [11, 12] for a detailed
discussion about related work wrt. laser scanners.



Fig. 2. Our quadrotor robot used in this experiments. The platform is based
on a Mikrokopter [1] and is equipped with a Hokuyo URG (1), an XSens
MTi IMU (2), a Gumstix embedded computer (3), and a laser mirror (4).

III. T ECHNICAL SECTION

We use the quadrotor platform shown in Figure 2 to acquire
3D scans and use them to recognize previously seen parts of
the environment. In this section we discuss how the scans
are obtained and present our algorithm for place and object
recognition.

A. Acquiring a 3D Scan of the Environment

The quadrotor acquires a 3D scan by hovering around a
desired spot and changing it’s altitude. To obtain a full360◦

scan, we turn by180◦ and repeat the process. The choice of
the place where to acquire a scan can be triggered manually
(e.g., by pressing a button), or by incorporating an exploration
behavior into the robots navigation system. However, our focus
is on how to extract 3D data from the robot and on the
algorithms for place/object recognition. We therefore acquired
all measurements by manual flights.

The robots navigation system estimates a full 3D pose
(i.e., (x, y, z, φ, θ, ψ)) by means of 2D laser scan matching.
In more detail, we use the current measurement about roll
(φ)) and pitch (θ) from the IMU to project the current laser
measurement onto a 2D plane. We then employ hierarchical
correlative scan matching similar to the one proposed by
Olsonet al.[10] to estimate the incremental 2D transformation
((x, y, ψ)). To get an accurate estimate of the robot’s pose,
we employ a grid resolution of0.01m×0.01m at the finest
resolution of the grid map. The laser beams deflected by the
laser mirror are used to estimate the current global altitude
(even in the presence of obstacles underneath, see [7] for
more details). Together with the IMU measurements of roll
and pitch we now obtain an estimate of the full 3D pose of
the robot. A 3D measurement consists of all measurements
taken while the robot hovered around a spot (i.e., within a
region). Additionally, we require a substantial variety inthe
altitude during the scan (i.e., having at least a variation of
1 m). An example of such a scan is shown in Figure 3. The
left image depicts the 2D map build from the measurements.
This map was used to determine the pose of the robot. The
right image shows the corresponding measurements projected

Fig. 3. Left: 2D map generated by the quadrotor. Given the measurements
about roll, pitch and the estimated altitude we then project the measurements
into 3D to create the 3D point cloud shown in the bottom right image. The
top right image shows the corresponding range image.

into 3D, given the 3D pose estimate of our navigation system.
In the remainder of this section, we will call such a set of
measurements acquired while hovering around a spot a 3D
scan of the environment. During the quadrotor’s mission, the
robot continues to acquire such 3D scans. These are then
stored in a database. However, the database can also contain
high density models of single objects like chairs recorded with
a different platform not necessarily a flying one.

B. Place Recognition

Given a database of 3D scans and a scan as input query, our
algorithm returns a set of scans which are potential matches
with the input. The database consists of measurements of the
environment previously recorded by the flying robot. These
measurements could have been recorded during the same
mission or in a previous one. Additionally, our approach
calculates for every returned scan pair (i.e., query scan and
matched scan from the database) a transformation and a score
reflecting how certain the system is, that the two scans actually
match.

More formally, let D denote the database of 3D
range measurements andz∗ a query scan. The goal of
our approach is to calculate a set of candidate pairs,
C(z∗) = (〈z1, T1, s1〉, . . . , 〈zn, Tn, sn〉). Here, zi ∈ D, i ∈
{1, . . . , n}, n = |D|, are the potential measurement candidates
from the database which are similar to the current queryz∗.
WhereasTi denotes the estimated transformation fromz∗ to
zi, si is a score reflecting the confidence about the match.
Our algorithm for calculatingC(z∗) mainly consists of the
following steps.

1) Generate a list of possible scan-pairs. This list could
be obtained using for example a bag-of-words (BoW)
approach for a fast pre-selection [12]. However, in our
case the databaseD of previously acquired scans is
typically small. In such scenarios, using BoW is com-
putationally more intensive than checking all possible
candidates. We therefore calculate a list of all pairs,
〈z∗, ẑk〉, ẑk ∈ D̂(z∗).

2) For each pair〈z∗, ẑk〉, ẑk ∈ D, k = 1, . . . , |D|, calculate
a set of possible transformations betweenz∗ and ẑk by
matching point features of the corresponding scans.



3) Score each of the possible transformations and get the
transformationTk with the highest scoresk. If this score
is above an acceptance threshold then〈ẑk, Tk, sk〉 is
a candidate for a recognized place, i.e., it is added to
C(z∗).

Although we work with a database of 3D range scans, we
do not use this data directly. We rather represent each three-
dimensional range scan by its dual, namely a range image (see
Figure 3 (top right)). If the 3D scan is captured from one point
in space, i.e., the sensor does not move while the 3D points are
generated, the range image contains the same information as
the scan. Although this assumption is violated to some degree
when using flying vehicles, we will still use the range image,
as they allow us to model unknown areas as well as maximum
range readings more efficiently.

We will now briefly describe the individual components of
our approach. More details about specific parts can be found
in [12].

C. Feature Extraction

To calculate a similarity between two scans, we first calcu-
late a set of features representing the scan. Our approach uses
the so-called NARFs (Normal-Aligned Radial Features) [13]
recently developed for robust object recognition based on 3D
scans. These point features are used to find corresponding
regions between two 3D measurements. The descriptors of
the features can be compared using standard norms like the
Manhattan distance. The resulting measure (thedescriptor dis-
tance) describes the similarity between the described regions.
Here, a high value reflects a low similarity.

D. Determining Candidate Transformations

Each NARF encodes a full 3D transformation. Therefore,
the knowledge about a single feature correspondence between
two scans enables us to retrieve all six degrees of freedom of
the relative transformation between them (i.e., by calculating
the difference between the two poses). To obtain the candi-
date transformations, we order the feature pairs accordingto
increasing descriptor distance and evaluate the transformations
in this order. In our experiments we stop after a maximum
number of 2000 evaluated transformations for computational
reasons.

E. Scoring of Candidate Transformations

The result of the feature matching is a list of relative poses
T̂k = {T̂k1

, . . . , T̂kn
} for the candidate pair〈z∗, ẑk〉, ẑk ∈

D̂(z∗). In the next step, we evaluate those candidate trans-
formations and calculate a score (likelihood) for eachT̂ ∈
T̂k reflecting the confidence of the transformation given a
model of our sensor. Since we use 3D range data, i.e., each
measurementz is a set of 3D points, we evaluate the candidate
transformationT̂ on a point-by-point basis (i.e., we assume the
points are mutually independent).

F. Object Detection

Our approach for object detection is similar to the one of
place recognition. Again, we have a databaseD containing
models of specific objects. These models were previously
acquired by a different robot by merging multiple scans of
the object from different perspectives.

To detect an object in the current measurement we match
NARF features against the object features from models in
the databaseD similar to the case of place recognition.
However, the main difference between our algorithms for
object detection and place recognition comes from having a
full 3D model of the corresponding object. Given a candidate
transformation, i.e., the expected position and orientation of
the object obtained from the matched NARF features, we can
calculate an expected range image of the object. This allows
us to compare this range image to the one obtained from the
current scan pixel by pixel.

Again, based on our observation model, we calculate a score
for each candidate (object and transformation). An object is
detected in the environment, if the corresponding score is
above a given threshold.

IV. EXPERIMENTS

This section provides our experimental results. We will first
show our results for place recognition. Subsequently, we will
demonstrate our first results on object detection.

A. Place Recognition

In the following experiment we manually flew the quadrotor
several times in an office environment. The whole set consists
of 23 scans obtained in four distinct runs. The overall 3D
map using our navigation system is shown in Figure 4. The
individual places where the quadrotor recorded a full 3D
scan are highlighted by the labels1, . . . , 23. The blue part
of the rectangles in Figure 4 are pointing forwards wrt. to
the quadrotor. Figure 4 (top right) shows the ground truth
confusion matrix of the individual scans. Here, dark areas
reflect a high similarity between the corresponding scans. The
confusion matrix estimated by our approach is shown in the
bottom right together with a plot of the recall rate versus
the distance of individual scans. For example, for all scan-
pairs which were recorded at most 1 m from each other, our
approach correctly recognized all loop closures. Subsequently,
for all scan-pairs which were at most 2 m apart from each
other, our approach still was able to correctly recognize about
73% of all potential loop closures. Note that the recall rate
drops quickly starting from 3 m on. This originates from the
fact that the laser range scanner has a maximum range of
5.6m. In this case, scans which have been acquired 3 m apart
from each other only have a very limited overlap.

B. Object Detection

To get some initial results for the object recognition pro-
cedure, we used the quadrotor platform to capture five 3D
scans in an office environment, where several instances of a
chair of which we obtained a full 3D model were present.



Fig. 4. Our quadrotor acquired360◦ 3D scans at 23 distinct positions. The image shows the corresponding 3D map using our navigation system. The
positions where the quadrotor acquired are labeled1, . . . , 23. Note that Figure 3 shows the scan taken at position 14. Here,the blue part of the rectangle is
headed towards the front wrt. to the quadrotor. The ground truth confusion matrix is shown in the top right, the one computedby our system is in the bottom
right, together with a graph showing the recognition rate for different maximum distances between scans.

Using a minimum acceptance threshold that returned zero false
positives, we were able to find about73% of those chairs. See
Figure 1 for an example. For lower acceptance thresholds there
are a number of false positives where the system assumes that
the chair was seen from the back. From this perspective it
presents mostly a flat surface of a certain size, which is hard
to distinguish from other flat structures in the environment.
Our plan is to achieve higher recognition rates by using an
active exploration strategy and tracking found objects until
they were seen from more then one perspective to achieve
higher recognition rates and remove false positives resulting
from views that provide little distinctive structure.

V. CONCLUSIONS

We presented a novel approach for robust place recognition
using data acquired from a flying vehicle. Additionally, we
present a variation of our approach used for object detection.
Our quadrotor acquires 3D scans of the environment by
hovering around a spot while changing its altitude. Those scans
are matched against a database containing previously acquired
scans of the environment as well as models of different objects.
Our system has been implemented and successfully tested. The
experimental results demonstrate that our approach is ableto
robustly recognize previously seen parts of the environment.
Our first results also imply, that our approach can reliably
detect known objects in the environment. In future work, we
aim to combine the object detection approach with an active
exploration technique.
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