Activity-based Estimation of Human Trajectories
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Abstract—We present a novel approach to incrementally de-
termine the trajectory of a person in 3D based on its motions
and activities in real-time. In our algorithm, we estimate the
motions and activities of the user given the data obtained from a
motion capture suit equipped with several inertial measurement
units (IMUs). These activities include walking up and down
staircases as well as opening and closing doors. We interpret
the first two types of activities as motion constraints and door
handling events as landmark detections in a graph-based simul-
taneous localization and mapping (SLAM) framework. Since we
cannot distinguish between individual doors, we employ a multi-
hypothesis tracking approach on top of the SLAM procedure
to deal with the high data-association uncertainty. As a result, = “— : :
we are able to accurately and robustly recover the trajectory m o
of the person. Additionally we present an algorithm to build ig
approximate geometrical and the topological maps based on the
estimated trajectory and detected activities. We evaluate our
approach in practical experiments carried out with different 2|
subjects and in various environments.
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I. INTRODUCTION

HE problem of localizing and tracking people has re-
cently received substantial attention in the robotics cormes |
munity as knowl_edge abt_)ut the current position qf its usars c T ——— T ———
help a robot to improve its services. Especially in emergenc
situations, like after earthquakes or during fire fightinige t Fig. 1. Top: Typical data obtained from the Xsens MVN datd siien a
; ject opens a door. Our approach uses such motions to detedtandling
knowledge about the_ Io_caﬂon of F’eOp'e can greatly_ Su_pp(zwnts that are then utilized as landmarks in a graph-basedifation of the
search and rescue missions. Consider, for example, firef@hts am problem for recovering the full trajectory of the pens@ottom: The
in a building enclosed by smoke and fire. If a map of thew odometry data provided by the data suit (left) and thesoted trajectory

environment can be constructed while the firefighters affier applying our approach (right).

within the building, an operator or automated system caflairs and applies a graph-based formulation of the SLAM
re-route the people to the exit in case of an emergengyoblem to recover the full 3D trajectory of the person. listh
Alternatively, one can use the map of the environment to mofgrmulation, the odometry estimated by the data suit and the
intelligently coordinate the actions of the rescue workiers estimated heights of the stairs are regarded as links betwee
more effectively search the environment for potentialimist the landmarks which are constituted of the detected doars. T
and at the same time reduce the time the rescue workers @@l with the high data association uncertainty in the laamtm
exposed to potential threats and hazards. detection, our algorithm applies a multi-hypothesis tiagk

In this paper, we present an approach to recover humggheme. After calculating the path of the person, our aigori
trajectories from data obtained with an XSens MVN dat@nders a map containing the individual stairs, the estthat
suit [1] by treating activities as landmarks. We employ thigoors, and approximate locations of walls. The work presént
information in a graph-based SLAM approach to calculatgere extends our previous work [15] by detecting additional
the most likely trajectory of the human. The MVN data suictivities and extending our approach from 2D towards 3D
records full body postures of a subject, by using a set ghjectory reconstruction evaluated by a new set of lardedn
inertial measurement units (IMUs) and a biomechanical lumaxperiments carried out in different environments.
model. Figure 1(top) depicts typical data obtained from the
data suit when a person opens a door, whereas the bottorithe remainder of this paper is structured as follows. After
left plot depicts the raw odometry estimated by the suidiscussing related work in the next section we present our
The outcome of our proposed approach is depicted in thpproaches for learning door handling events and detect-
bottom right plot of Figure 1. To correct for odometry errorgng stairs in Section Ill. Section IV introduces the multi-
our approach applies supervised classification for differenypothesis tracking algorithm for sensors providing only
types of activities such as stair climbing and door handlingositive feedback and especially the expressions needed to
It then utilizes the learned classifiers to detect doors andlculate the probabilities of individual hypotheses. $aib
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qguently, Section V describes how we detect potential loggep size using a singe IMU and thus estimate the odometry.
closure candidates. This is followed by the description wf oColey et al. [6] use wavelets to detect steps using gyroscopes
overall system in Section VI. In Section VIl we present ouonly. In the work of Tothet al. [25], a prototype for pedestrian
experimental results based on real data recorded with &sbjaelead-reckoning and their general concept of sensor fusion i
walking inside of various buildings and covering multipledt discussed. The HeadSLAM approach by Cinaz and Kenn [5]
levels. We furthermore present our results on approximaenploys a laser scanner together with an IMU mounted on a
mapping and compare the estimated maps with floor plahsimet. They use the IMU sensor to project the laser scans
of the same building. into a horizontal plane in a global coordinate system and
employ a variant of GMapping [14] for mapping. In particular
they incorporate a simplified motion model with two modes.
Whereas the first mode corresponds to the activity walking
The problem of tracking the correct data association [16hd assumes constant velocity, the second mode represents
as well as human indoor navigation and localization halke situation that the person is standing still and assumes z
recently become an active research field [5], [17], [18kpeed. An overview over existing technigues can also bedfoun
[24]. A number of different sensors have been employed [9].
as well as different kinds of localization techniques have
been used. One of the first approaches in this area has
been proposed by Lee and Mase [17], who employ wearable
accelerometers and other sensors, like a digital compass anThe MVN software filters the raw data of the IMU’s in the
a velocity sensor, to recognize when humans perform specifiata suit and estimates an odometry of the body segments
activities and change their locations in indoor environtaen consisting of the (filtered) pose, velocity, and accelerati
They integrate the accelerometer data over time and egtimdbwever, we need to keep track of other specific events or
the position of humans in a known environment based deatures. Without this additional information we cannotede
higher level descriptors such asanding 2 steps northor loop closures and thus cannot correct the raw odometry from
40 steps easetc. The field of human indoor navigation andhe data suit. A dead reckoning estimate of the trajectory,
localization is therefore closely related to activity rgon@ion however, leads to an inconsistent map due to the accumulatio
using accelerometer data. Bao and Intille, [3] as well ag small errors over time as shown in Figure 1(bottom left).
Ravi et al. [21] have presented approaches to predict certainin this work presented here, we restrict ourselves to struc-
low level activities likewalking standing running sit-ups tured environments such as office buildings. To allow us to
and others using features from raw accelerometer data andoarect the odometry within such buildings, we propose to
variety of different learning algorithms. However, they mat use information about human activities as landmarks. We
employ this information for indoor positioning. Schindlet extract two different types of activitiespening or closing of
al. [24] utilize an accelerometer together with an infrared doorandwalking up or going down a stailWe use motion
proximity sensor mounted on a pair of headphones to detéetplates [15] to detect door opening or closing events and a
when a human is passing through a doorway. In this wornkeural network to detect steps. In the next sections, we will
the authors are able to construct topological maps, whdygefly describe both approaches.
rooms are represented by single nodes and edges represent
the path in steps between doorways. For building these ma
and for detecting loop closures, the user has to indicate
gesture which door was passed, i.e., giving each door a eniquTo learn the typical motion used for handling a door we
identifier via the infrared proximity sensor. They furth@m® use motion templatesV(T) as proposed by Mler et al. [19].
apply a Bayesian filtering scheme to localize the personimvithThe key idea of this work is to use simple Boolean features
the resulting map. like right hand is above headnd to create more expressive
In recent years, low-cost inertial measurements units (IMeatures (motion templates) by combining the simple ones.
based on MEMS have become available and many researclt@rgen f of those features and a motion sequence of legth
use such sensors for pedestrian localization, either alome this leads to a matrix of siz¢ x K. Note that each entry of
combination with other sensors. Foxkat al. [11] incorporate this matrix is either 1 or 0 indicating this feature beinghaet
a zero velocity update allowing to estimate the users trajgc or not at the specific time and that the sequence leAgtan
using an extended Kalman filter. Borenst@hal. [4] use a in general be different for each motion sequence. Consater f
highly precise IMU also combined with zero velocity updatesxample the two feature§, f, with f; indicating the left foot
and obtain an accurate dead reckoning odometry. Woodrharbeing in front of the body and, being 1 if and only if the
al. [27] as well as Wangt al.[26] include additional informa- right foot is in front of the body. Given this set of features,
tion using WiFi. Both research groups employ a particlerfiltea typical walking template for two different sequences @& th
to track possible trajectories and calculate the weighthef same length could look like Figure 2(a) and (b). The learned
particles based on the WiFi signal strength. Fisateal. [10] template given these two examples is depicted in Figure 2(c)
discuss the possibility of using ultrasound sensors toaetlhie Here, black and white correspond to 0 and 1 respectively. The
error introduced by the MEMS sensors and present simulatigray-shaded boxes account for the faétmeaningdon’t care
results. Felizt al. [8] utilize a neural network to estimate the
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a) f‘ m_im are not very sophisticated, we can reliably detect the gaint

time when the door handle was touched withis seconds

b) [ Imuw of the true event (we evaluated this using manually labeled

ground truth). Therefore, we can use the pose of the hand as

c) ? ma-lml an approximation of the location of the door.
’t >

B. Stair detection

Fig. 2. A synthetic example: Given two examples (a) and (b) efsame T he gble to reconstruct 3D trajectories within buildings,
motion walking The featuresf;, f are 1 (white) iff the left/right foot is in ., . . . .
front of the body and 0 otherwise. The resulting merged terajtadepicted in 't 1S 'neV_|tab|e to de_teCt yemcal movemems of the usereDu
(c). Here, gray areas indicate the valus, meaningdon't care Intuitively, to the high uncertainty in the height estimate of IMUs, the
the matrix can be interpreted through the following sectidest paralle]  manufacturer's software assumes an environment corgistin
right foot in front, feet paralle] left foot in front feet parallel . . .
of a single floor. When walking up or down a staircase,
The algorithm for learning a motion template for a singléhe software “snaps” the human to the ground. Therefore,

activity A can be briefly summarized as follows: one needs additional means for determining changes in the
1) calculate the motion templates for all exampleséof ~ # coordinate. In this paper, we achieve this by identifying

2) take one of the motion templates, called the referencill StePPing motions carried out whenever the user walks
template, and align all remaining to this one usin p or down staircases. In principle, we could have employed

dynamic time warping [20]. This procedure ensures thHi€ Same motion _templa’Fe approa_ch as for the door handling

all other templates have now the same length as tfyents. However, in practical experiments we found thaihdur
reference template typical stair-climbing people need approximatélyy seconds

3) compute a new template as the average of all. for each stair so that the motion templates described above,

4) repeat the previous two steps for each motion templich detect doors with an accuracy bb seconds, were not
being once the reference template accurate enough to exactly determine the point in time when

5) replace the training data by the outcome of the computif foot is placed onto a stair. However, increasing the time
templates resolution of the MT accordingly leads to a high computadion

6) repeat the whole process until no major diﬁerenc%omplexity due to the dynamic time warping. We therefore
between the templates exists developed an efficient and temporally substantially more ac

_ ) curate classifier for detecting the individual stairs based
Note that the averaging of the templates include more Comsral networks.

plicated steps, but we refer to the original work ofil\ér et The goal of the following approach is to detestair
al. [19] for more details about learning a motion template. events, consisting of two subclasses nansthyjr up andstair
Given the learned template for each activity (which wgown To achieve this, our method employs a sliding window
call a class template) and a new motion sequence, we Ghsisting of5 frames that correspond 0.7 milliseconds.
calculate a similarity between both. To do so, we computegithin this window, we extract features from the suit's data
motion template of the actual sequence and align it to eaghmore detail, we use the relative position of the feet ared th
class template using dynamic time warping. This allow us tges as well as the minimum and maximum acceleration. We
compute a distance for each pair of templates. If this degtantrained the neural network using manually labeled traimiat
is below a threshold- € [0, 1] the actual motion sequence isemploying SNNS [28] and RProp [23] as learning functions.
said to belong to the same motion class as the class templatge training data was recorded by a person walking up and
Intuitively, this value reflects the percentage of featwsch  down two different staircases twice and contains a totaléof 5
do not match the learned template. stair events, covering slightly more than two minutes. Once
Since we are only interested in the motion used for handliryr predictor has detected a stair event, we estimate tighthei
(i.e., opening or closing) a door with either the left or thef each stair, by calculating the difference between the two
right hand we use features based on the pose and velo¢#¥t along thez-axis given the pose estimates obtained from
of the hands only. More precisely, we use a set of featurgfe data suit. Using this approach, we are able to detect step
describing whether the hand is at the level of the door handis/ents with an error up to 1.5 frames (L2ms) with respect
whether it is raising, hold still or lowered, and finally whet to a manually measured ground truth.
the hand is moving towards the body or away from it. We Up to now, we are able to detect when the user climbed up
learned the template for the activityandling a door which or down a staircase and employing the motion templates, we
consists of the four subclassegen left, close left, open right, are able to detect when the user touchedbor. However, we
close right using 10 examples from a training data set for eaatb not possess any information of which door was handled. We
subclass. Based on a second validation data set, we seledietlefore have to take care about possible data assosiation
the thresholdr = 0.25 for detecting the motion. Using thiswhich we deal with by employing a multi-hypothesis-tracker
threshold, we did not encounter arfiglse positiveson the as described in the next section.
validation data set. Within this process, we used data decbr
by three subjects. The motion of two subjects was used for IV. MULTI HYPOTHESISTRACKING
training, whereas the motion of the third one was used forin this section we review the Multi Hypothesis Tracker
validation. Although the features used for detecting a do@HT) as described by Reid [22] for sensors providing only




positive feedback. If the user handles a door, we gain inrderrmumber of new doors following a Poisson distribution with
tion about this door only and not about any other door in trexpected number of doovs,.,, in the observation Volumé&”
users neighborhood, which is different from tracking npléi we obtain

targets with a laser scanner for example. In the originakpap b1 s

by Reid, sensors providing only this kind of positive feeciba p(¥5(R)12)) = Paet (L= 05 Anew V) “)
are called type 2 sensors. There, any measurement can be (AV)" exp(—AV) . _ o
either detected (assigned to an existing track), marked a¥vBere u(n; AV) = ] is the Poisson distri-
false alarm, or be a new track. Since in our particular case thution forn events given the ‘average rate of events is the
tracks are static doors, we will call them doors in the remi@in volume V. Therefore, Equation (1) can be reformulated as
of this section, rather than tracks. As described in Sedtioh

I OF = k), QF 1z,
we select a threshold for detection in such a way, that we dg( j17) (¥ (k). p(J) [#x)
not have to m_odel false positives. Therefore, a measurement Za?:.esf np(ZkI\I’j(k),Qﬁ(ji)p(\llj(k)|9’;(—j;) )
can only be interpreted adetected(when matched to an arkov 1
existing door) or as aew door In the remainder of this p(Qp(j))
sec.tion we derive the probabilities of individual measugam = DN () VO A e V)2
assignments. e
Let Q% be thej—th hypothesis at timé and2*! the parent exp(—Anew V) (1 = ) p(Q2)5)). (5)
J p(5)

hypothesis from which2} was derived. Let further;(k) Opserving tha(l — 6)! is always 1 (since is € {0,1}) and

denote an assignment, that based on the parent hypothggifing thatexp(—,..,VV) can be taken into the normalizer
Q’;(*Ji and the current measuremeni gives rise toQﬁ?. we can finally rewrite Equation (5) as

The assignment sdt; (k) associates the current measurement 5
either to an existing door or a new door. Given the probabilit ~ p(Q%|z;) = 7 (./\/—(zk)pdet;;) e D). (6)
of an assignment and the probability of the parent hypashesi !

QF ), we can calculate the probability of each child that ha pto ngvxg_l\{ve c:m %etect doors and slta|rhsteps and calculate
been created througfi;(k). This calculation is carried out the probavility of a data association. In the next section we
recursively [22]: address the remaining questions during our SLAM procedure,

namely the detection of possible door candidates (i.ep loo
p(Ulz) = p(\Ifj(k)ﬁ’;(*j;\zk) closures), the calculation of the innovation covarianaed a

Bayes+ the algorithms which are utilized to correct the trajectory

A AOR e AG]thk

p(Qkf_l) 1) V. SIMULTANEOUS LOCALIZATION AND MAPPING

o) We address the simultaneous localization and mapping
with p(Q’;(‘ji) being the recursive term, i.e., the probability oproblem by its graph based formulation. A node in the graph
its parent. Here, the factaris a normalizer. The leftmost termrepresents either a pose of the human (center of the hip) or a
on the right-hand side after the normalizer is the measunemécation of a door (pose of the hand which was handling the
likelihood. We assume that a measuremgnassociated with door) whereas an edge between two nodes models a spatial
a door;j has a Gaussian pdf centered around the measuremssistraint between them. These spatial constraints atlser e
predictionz;, with innovation covariance matri&;, N'(z;) := from incremental odometry, potentially adjusted accaydin
N (215 2, S}). Here, the innovation covariance matrix is théo the stair heights estimated from stair climbing events,
uncertainty of the door with respect to the current trajgctoor by closing a loop which corresponds to establish a data
and is described in Section V. We further assume the pdf a$sociation between two doors. Thus, the edges are labeled
a measurement belonging to a new door to be uniform in tidth the relative motion between two nodes. To compute
observation volumé’ with probability V—!. Hence, we have the spatial configuration of the nodes best satisfying the

_ _ constraints encoded in the edges of the graph, we utilize a

p(zkm’j(k)’ﬂlzj(j;) = N()'vo, @ variant of stochastic gradient descent optimization [{23].

with & being 1 if and On|y if the measurement has beeﬁince the door handling activities give us no information
associated with an existing door and 0 otherwise. The dentf®out roll and pitch, we restrict our optimization problem t
term on the right-hand side of Equation (1) is the probapilit(z,y, z,¢), with ¢ being the yaw. This allow us to adapt the
of an assignment Seﬁ.(‘l’j(kﬂQ;(_j;), which is composed of fast 2D (z,y,¢)) version of the t.reg—bz.ised netwprk optim?zer
the following two terms: the probability of detectigry,,» and (Toro [2]) towards(z, y, z,0) optimization and still maintain
the probability of a new door. In our case the probability dfS computational properties. By repeatedly performings th

a detection is equal to choosing one of the current candid@flimization whenever a new door has been detected and a
doors, i.e., all doors within an uncertainty ellipsoid. Téfere, Neéw data association has been established we can incremen-

tally reduce the uncertainty in the current pose estimatiéewh
Paers = NC(xw, 255)) 7", with (3) processing the data.
b1 ] ) Since we are only able to detect the fact that there is
NC(x1:, 2, ;) being the number of door candidates, assumy- qoor, we have to track different possibilities of data as-
ing the trajectoryx;.;, within the world Q’;(_ﬁ Assuming the sociation, namely whether the current detected door is one
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Fig. 3. A snapshot from one of our experiments. (a) The humamters the building through door AO. Based on the MHT denisiew doorand match
with AO different hypothesis are generated (b) and (c). The préibabiof the hypothesis are depicted in (d).

of the already mapped doors or whether the door has raftthe pose was back-propagated utilizing Dijkstra expamsi
been perceived before. As already mentioned above, weaultilSince we used the same uncertainty foandy, the resulting
multi-hypothesis tracking for keeping track of all possiblellipsoid is a circle. Note that due to the back-propagatbn
outcomes. To detect a potential loop closure (i.e., re@gnithe uncertainty the current pose is in the uncertainty regio
a previously seen door), we identify all formerly detectedf the door AO. For better visibility, only the doors being
doors within the uncertainty ellipsoid of the current pose bconsidered as candidates are shown with their uncertainty
a Dijkstra projection of the node covariances starting fromegions. Therefore, only two data associations are pa&sgibl
the current position. The innovation covariance is disectlthis case, namely matching the current door with AO, which
used for calculating the likelihood of the door as described this case is the correct association, or marking it as a new
in Equation (6). All doors being within the 99% confidenceloor. Calculating the posterior probability of each assion
region of the current pose are considered as potential loeads top = 0.597 for the casenew doorandp = 0.403 for
closure candidates, and together with the possibility @& thhe correct association. Note that in this situation, a maxn
current detected door beingh@w door lead ton + 1 different likelihood approach selects the wrong association. Howeve
outcomes, given the number of loop closure candidates is as the human enters the building and opens another door,
For each of these association possibilities we create a segien the previous association, different possible outepare
rate graph, encode the selected constraint and optimifadt. possible. Figure 3(b) depicts the situation for the casettia
multi-hypothesis tree therefore grows exponentially imeti previous decision wasew doorand Figure 3(c) shows the
and pruning of this tree is mandatory to keep computationgifuation for the decisiomatch with A0 Given this sequence
costs reasonable. In our case, we utiltescan-backpruning of doors, the full posterior of the branchatch with AGat time
as proposed by Cox and Hingorani [7], which works assums up t00.6317 while the probability for the branch for
follows: it considers an ancestor hypothesis at time N and new doorsum up t00.3683 (see Figure 3(d)). Here, a N-scan-
looks ahead in time to all its children at the current titne back of 2 would be sufficient to keep track of the correct data
(the leaf nodes). The probabilities of the children are seaimassociation, since the MHT can decide to keegtch with AQ
up and propagated to the parent node at time N. Given at timet¢ and discard the other branch.
the probabilities of the possible outcomes at tilne N, the
branch with the highest probability at time is maintained  The output of this approach can be used to generate an
whereas all others are discarded. Since in our case, a stepgproximate geometrical as well as a topological map of the
the MHT only arises when a door has been detected, thisgisvironment. In short, we build a modified Voronoi diagram
identical to localizeN steps ahead in time (at door level). Irbased on the trajectory segments belonging to the same room.
our implementation, we do not count a data association (stBp assuming that doors separate rooms, we cut the trajectory
in time) if the only child of each hypothesis is the assoomati based on the locations of individual doors. Thus, even when
with a new dooror if the trajectory between two subsequeri door was not always detected or the user moved through an
handling events was smaller than 1 m, reflecting the immediaipen door, the trajectory is segmented into different rqoms
closing of the same door after passing it. Thus we ensure tigiten the specific door was detected at least once. Given the
at least one combination @¥ data associations in time reflectorientation of the door, we merge subsequent segments which
an N step localization among different and already mappegte both connected to the same door and on the same side (i.e.,
doors. we cluster the segments according to which room they belong
An example of the N-scan-back MHT algorithm is visuto). In order to seek for walls, we incrementally enlargeheac
alized in Figure 3. This example is a snapshot from one oluster’'s trajectory until it touches a trajectory belamgito
our experiments which is described in detail in our previowmother room or up to a distanege which was set to 1.5m
work [15]. At the specific timef, the human walked aroundin all experiments. Since we segmented the trajectory with
the building leaving at the top exit and entered the buildingspect to different rooms, we also obtain a topological map
through the main entry labeled AO in 3(a). Starting from thef the environment at the same time. Typical outcomes of this
posez, where the current door was detected, the uncertairngyocess are shown in Section VII-B.



V1. OVERALL SYSTEM

Algorithm 1 Human Indoor Mapping

Our approach is summarized by the pseudo-code in Algg€duire: measurements up to current timex; .,
rithm 1. Given the odometry up to the current point in time Requ!re: N-scan-back sizen
x1.¢, the N-scan-back size and the current multi-hypothesisR€auire: hypothesis treef™

1Lk _ 1 k i - ] ]
tree Q1% = {QF, ..., 0}, with @7 = {Q] ,...,Q] }, the

1: addNodeToEachHypothesis]

algorithm works as follows. Note thatis the current depth of . addEdgeToEachHypothesis( ;,x;)

the hypothesis tree and is increased only if there is amilyigui 3. 4 = detectCurrentActivities(; ;)
in the data association of a door. First, we add a node (aurren. if stepActivity € A then

pose of the hip) and an edge into each graph of the current
hypothesis at the current depthand detect the current activ- .
ities in line 1-3. This is performed by using motion tempsate -.
for detecting door handling events and neural networks fog.
detecting step activities as described in Section IIl. If ang.
activity is detected and this activity is a stair step, weraegt 1.
the odometry information of the current added nodes withy.
our height estimate (lines 4-8). If a currently detectedvagt 5.
is a door handling event, we calculate for each hypothesjs.
QF at depthk potential loop closure candidates) using 14.
a Dijkstra expansion starting from the corresponding curre ;5.
pose. If for all hypothesis no potential loop closure caatid 4.
exists, each of the current hypothesis can only includew
door as described by lines 17-20. Note that in this case jt.
is obsolete to adjust the hypothesis probabilities sinde glg.
probabilities are multiplied by the same factdy.,, which g
would be normalized out later on. In the case that at least opg
hypothesis at depth has one potential loop closure candidate;.
we create a new set of children for all hypothesis (lines 2p-2 5.
A new dooris added to one child of each hypothesis whereas,.
the graphs of the remaining children are augmented with the
loop closure edges and the probabilities of the individug),.
hypothesis are calculated according to Equation 6 (lines 24
31). Subsequently, we normalize the probabilities andoperf
the N-scan-back pruning as described in the previous sectig®
Finally, we optimize the remaining hypotheses at dépth1
and calculate the approximate map of the environment 36
specified by lines 32-36. 28
29:
VIl. EXPERIMENTS 30:
The following sections show the results obtained with ousl:
currently implemented system. First, we will present oug2:
results on 3D and 2D trajectory reconstruction based on humas:
motion and activity and evaluate the error of our estimategh:
door locations wrt. a manually measured ground truth. \gs:

x; = estimateHeighi;)
updateLastAddedNodelnEachHypothesj$(
updateLastAddedEdgelnEachHypothesjs(,x;)

end if
if doorActivity € A then

da = doorActivity // for better readability
k, = |Q2%| Il number of hypothesis at depth
v = 0 /[ number of all loop closure candidates
for j=1,...,k, do
C} = calculateLoopClosureCandidat@$)
v=uv+ \C’Jk|
end for
/I no candidates+ new doorfor all hypothesis
if v ==0 then
addDoorNodeToEachHypothesis(da.hanii)
addEdgeToEachHypothesis( ;, da.handx;))
else
for j=1,...,k, do
vj = |C]’?| I current number of candidates

{QFF1 0. kL ) = createChildrersg!, v, + 1)

/I new door
"/, .addDoorNode(da.hand()
Oy ,.addEdget; 1, da.handg;))
calculateProbability*
/I 'loop closures ’
fori=1,...,v; do
Qf*! addLoopClosureEdges (i)
calculateProbability} )
end for
end for
k=k+1
normalizeProbabilities{*+1)
nScanBackPruningt+1—mk+1 pn)
optimizeEachHypothesi@f !, numlterations)

calculate the error by first estimating the best transfoionat 36: calculateApproximateMapForEachHypothe&ist!)
between the estimated map and the ground truth throughlout2d:  end if

floors. This transformation is then used to calculate thererr3ss: end if

(mean and standard deviation) between the estimated deor lo ] .
cations and the ground truth map. In Section VII-B, we finalljéveral floor levels. All experiments were performed using
present our results on approximate mapping. Videos of the & N-scan-back of 3 andl,..,, = 0.03, which approximately
periments can be found on the Weittp://ais.informatik.uni- 1 the number of doors relative to the area covered by the
freiburg.de/projects/mynshowing the incremental update offuilding. In generalj,..., depends on the type of building. For
the final best hypothesis. Our current system, though rff@mple, in a hoteh,..,, should be significantly higher than

optimized, is able to perform an incremental update at a rdfe@ warehouse. However, we found that small changes to this
of 10Hz on an Intel i7 1.7 GHz laptop. parameter do not lead to substantially different resultsisT

the remaining free parameter is the covariance matrix fer th
A. 3D Trajectory Estimation Dijkstra expansion. Recall that we have no information abou

We evaluated the approach described above on different dé}@ current magnetic field. The covariance matrix, theesfor
sets in which the user walked through buildings containin%]so reflects the magnetic disturbances present in theitgild
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Fig. 4. Outcome of the first experiment: (a) the raw trajectastneated by the data suit. The estimation of the ground leveltha first floor are shown
in (b) and (c), and aligned to a floor plan in (d) and (e) respelst The raw odometry combined with the raw detection ofrstand doors is shown in (f).
A 3d plot of the building estimated by our approach is showngh (

since high magnetic field errors result in a high pose errtivat the building contains less metal structure compared to
estimation from the data suit. Note, that all plots of singlmodern buildings so that we obtained only small magnetic
levels of the buildings given in this section also contaih atlisturbances. As can be seen in the next experiments, larger
points up to the middle of the next and the previous floatisturbances typically lead to a high pose error. The raw
respectively. Furthermore, all distances are given in mseteodometry including our step and door detection is plotted in
Please also note that the raw data (without the step detgctiBigure 4(f). The maximume-likelihood map estimated by our
contains no information along theaxis wrt. different floors, approach is depicted in Figure 4(g). For better comparison,
i.e., only a single floor level is present. we also segmented the trajectory for different floor leveld a

The first experiment contains a trajectory of approximateffPMPare them to floor plans generated by the architect of the
2.2km including 222 door handling actions and is depictetfMe building as shown in Figure 4(b-e).
in Figure 4. The building has three floor levels, namely the The data for the second experiment was recorded in a typical
basement, an intermediate floor level containing the maimiversity building containing several floors and incluglin
entrance, and the first floor. Since the intermediate levahall seminar rooms as well as big lecture halls and a small
contains only the main entrance door, we omitted to plébrary. The trajectory is approximately 2.85km long caxgr
this floor separately for better readability. We used a vaega three floor levels. This experiment is challenging due to two
of 0.03m per meter inx as well as iny and a variance reasons. First, the metal disturbances rising from the Imeta
of 0.1 m per meter along the axis. Our approach reliably structure of the building itself and from walking closely to
detected 215 out of the 222 door handling events with owcbairs and tables lead to a high pose error as can be seen
false alarm. The average error of the estimated door latatian the raw data depicted in Figure 5(a). Second, the first
is 0.31 m*0.17m wrt. a manually measured ground truth. Wand the second floor are nearly identical on one side of
detected 106 out of 116 stairs, missing 7 stairs down andr3 sthe building which results in many potential loop closure
up and had one false alarm. The difference in the calculateghdidates. Compared to the first experiment, this building
stair size between up and down is approximately 3.5cm. Thentains in total five different staircases. Two staircases
raw odometry is depicted in Figure 4(a). Although no floopresent in each of the two lecture halls (see Figure 5(f) left
level information is present in the raw data, the raw odoynetpart) connecting the first and the second floor, whereas the
trajectory is already quite accurate. This results fromf#ted main staircase connects all three floors. In this experiment
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Fig. 5. The second experiment was performed in a universitiglingi. The raw data is depicted in (a), whereas the diffefleratr levels plotted on top of
the floor-plans of the building are shown in (b)-(d). The ramjectory including the uncorrected stairs and doors isatiegh in (e). The maximum likelihood
estimate of the whole building using our approach is showrf)in (

we used a variance of.1 m per meter in all directions, in this building is approximately 1.46 km and contains 135
i.e.,, z, y, and z. The raw odometry trajectory including thedoor handling events from which our approach detected 126. |
steps detected by our algorithm is plotted in Figure 5(€urthermore resulted in one false alarm in the lower lefheor
The maximum-likelihood result of our approach compareaf the first floor. The least mean square error of our estimated
to the floor plans of this building are shown in Figure 5(b)door locations i9.67 m+0.40 m. Regarding the step detection,
(d). Finally, the maximum likelihood estimation of the whol we were able to detect 271 out of 280 stairs, missing 7 stpirs u
building is depicted in Figure 5(f). In this experiment weand 2 stairs down. The calculated stair size for the citais
detected 175 out of 178 door handling events with an averad@wvnwas in average 4cm higher than for the classir up
error of 1 m+0.41 m. We also had one false alarm at the thirdhe raw trajectory is depicted in Figure 6(a) and (g) togethe
floor level which originates from moving a chair away in thevith the raw steps and doors detected by our algorithm.
library which was blocking the user’s path. Regarding tlaérst The resulting map estimated by our approach is depicted in
detection we missed 62 out of 473 stairs (42 stairs up and Bigure 6 (h). The individual floors plotted on top of the floor
stairs down). The average difference between the calcllafgan are shown in Figure 6(b)-(f). Note that the estimate of
stair heights is 1.3 cm. the first floor is slightly suboptimal due to the severe error i
The third experiment was recorded in a university buildinthe raw data. Since some of the doors were locked, we were
consisting of five floors and containing a substantial amoéint not able to enter all rooms. The corresponding doors appear
metal structures. Here, the magnetic disturbances didvest eto be not connected to the trajectory in Figure 6(c)-(f).sThi
allow for a proper initial calibration of the data suit. Ttiad a effect originates from the fact, that the user was not able to
severe influence on the estimated raw odometry trajectogy. \Bass through the corresponding doorways, i.e., door pasiti
intentionally included this experiment to show the robess are obtained by the hand pose handling the door whereas the
of the current approach even in the context of substantiehjectory is given by the position of the user’s hip.
disturbances. Although our assumption about a Gaussian err We also performed several experiments covering a single
on all degrees of freedom is highly violated (for exampleg orfloor level using the motion of different subjects (see our
staircase is rotated by 45 degrees in the raw odometry data)pvevious work [15] for more details). The trajectory of the
still were able to approximately recover the true trajectont fourth experiment is about 1.6 km long. Our approach rejiabl
with one misaligned door (see Figure 6(b)). This door, whiadtketected 125 out of 133 door handling events. The corrected
is marked by an arrow in the figure, is wrongly labeled asteajectory including the approximate location of walls i®wn
new door. As in the previous experiment, we used a innovation Figure 7(a). This experiment also contains several loops
of 0.1 m per meter along all axis. The total distance travelemtound the building but we show only the inner part for better
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The third experiment was performed in a building coritey a lot of metal structure. This introduced severe errorthe trajectory provided by

the data suit, especially when walking up and down the stegdetween the first and the second floor. Note the two iretamicthe staircase are rotated
by approximately 45 and -40 degrees in the left part of imageTbg raw trajectory is depicted in (a) and (g) together wite butcome of our step and
door detection algorithms. The maximum likelihood map of the lefmilding is shown in (h), whereas the individual floors camga to its floor plans are
shown in (b) through (f). Note that the high pose errors lead tvrong data association in the ground level (a), wheredfiedbor marked with the arrow
was wrongly labeled as mew door

readability. Note that this experiment was recorded in Hmaes record data while walking in their building. The raw odonyetr
building as the first one and that we used the same parametestimate is shown in Figure 7(g) and the corrected trajgctor

The error of the estimated door locations)i§ m=+-0.24 m.

is shown in (h). The trajectory is approximately 0.4 km long.
The fifth experiment covers a trajectory of approximatelin this experiment, we detected 24 out of 27 door handling

1.3km and our approach reliably detected all 63 door haevents and used the same parameters as in the previous one.
dling events with an error 0f.61 m%0.17m. The corrected However, since this experiment was recorded by a different
trajectory is shown in Figure 7(d). Here, we used the sarteam, we do not have ground truth data of the locations of the
parameters as in the second experiment since it was pedormeors but only a floor plan of the building.
in the same building.

The last experiment was recorded in a typical office environ- The outcome of all experiments together with the parame-
ment. For this experiment we asked people from a companytérs used is also summarized in Table I.



10

Fig. 7. Typical outcomes of our approximate mapping algoritimd #he corresponding floor plan of the same building. Therehigyh correlation between
the map generated by our approach and the corresponding flror @ur approximate mapping approach segments the trajeictimnyifferent rooms and
calculates approximate location of walls. Due to the segntientave also obtain a topological map which we colored in ordehighlight the segmented
rooms. The first images (a)-(c) show the result of the fourtregrgent. The approximate map is shown in (a) and the coloredrdiogpto detected rooms
in (b). The corresponding floor plan is shown in (c) and calarespectively. The results for the fifth experiment are showfd)-(f). The bottom row shows
the result for the last experiment, including the raw odométjectory (g) and the outcome using our approach (h)-(jteNbat the inner walls in (b) are
present since all experiments were performed with a maximurardistofd = 1.5m, i.e., the distance of a wall to the nearest trajectory is agtric m.

Experiment | Trajectory | No. of Door detection Step detection Parameters Error of estimated

No. length floors | Recall rate| False Positives| Recall rate| False Positives| Anew | N | 02 | o2 door locations

1 2.2km 2 0.968 1 0.914 1 003 | 3 | 003 | 0.1 0.31m=0.17m

2 2.85km 3 0.983 1 0.869 0 003 | 3| 01 |01 1m+0.41m

3 1.46 km 5 0.933 1 0.968 0 0.03 | 3 0.1 0.1 0.67m=0.40m
4 1.6km 1 0.94 0 n/a 0 003 | 3 | 003 | 0.1 0.5m=£0.24m

5 1.3km 1 1 0 n/a 0 0.03 | 3 0.1 0.1 0.61m=0.17m

6 0.4km 1 0.889 0 n/a 0 003 | 3| 01 |01 n/a

TABLE |

SUMMARY OF ALL EXPERIMENTS. THE RECALL RATE IS CALCULATED AS THE RATIO OF TRUE POSITIVES VRSUS THE ACTUAL NUMBER OF EVENTS
N IS SHORT FORN-SCAN-BACK, 0'925 y IS SHORT FORO’%, 0'5, AND N/A IS SHORT FOR NOT AVAILABLE.

B. Approximate Mapping performed using a maximum distance df = 1.5m as

In this section we show our results of approximate mappirﬁfscr'bed in Section V. Figures 7(g)-()) depict the outcome
for floors of different buildings. Figure 7(a)-(j) show typi ©T @n experiment in gtyplcal company environment including
cal outcomes of our approach and the buildings floor platRe raw odometry trajectory (g). Figure 8 shows the outcome
respectively. Note that our mapping technique segments #fePUr segmentation approach for the second experimene, Her
trajectory into different rooms. We therefore can calaulatVe Omit to plot the walls since the perspective view of the 3D
both, a geometrical and a topological map. The topologic%qru‘?ture in combination with the outer wa!ls would render
map colored wrt. different rooms (using 3 colors in totali® figure completely black. However, the trajectory repnés

is shown in Figure 7(b),(e), and (i). The corresponding flogiso the to_polog_lcal structure of the building as can be seen
plan have been colored respectively and are shown in Ffjt comparing with the corresponding fI_oor plans of the same
ure 7(c),(d), and (). As can be seen, there exists a hifRO" As can be seen frpm 'Fhes_e experlmgnts, our approach is
correlation between the estimated and the real floor plaf@Pust and can be applied in different environments.

Errors mainly arise from rotational errors as can be seen in

the bottom left part of Figure 7(d). These rotational errors VIII. CONCLUSIONS ANDFUTURE WORK

however, can be corrected by including an additional loop In this paper, we presented a novel approach to accurately
around the building from the outside. The walls within thestimate the 3D trajectories of humans based on data gdthere
map of Figure 7(d) are present since all experiments weréth a motion capture suit. Our approach extracts two diffier
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Fig. 8. Outcome of our approximate mapping algorithm and theespond-
ing floor plans of the same building for the second experimelead® note,
that we omit the plotting of walls, as the perspective viewhef 8D structure
in combination with outer walls would lead to a black figure eTthree floor
plans on the right hand side are colored wrt. the segmentgettvay and
reflect the individual floors of the building (see also FigG)e

(23]

(14]

activities from the motion data, namely door handling aradt st
climbing events. We consider the trajectory of the persah afi5]
the height estimates of our step detection algorithm asamoti
constraints. The door handling events detected using fapegj g
motion templates are used as landmarks within a graph-based
SLAM approach. To cope with the high data associatio[li]ﬂ
uncertainty, we employ a multi-hypothesis tracking apphoa
Additionally, our method can create approximate geomaitriq18]
as well as topological maps of the environment based on
the estimated trajectory and activities. Our system has bee
implemented and successfully tested on real data recoriled 9]
different subjects in several buildings of a university gas

as well as in a typical office environment. The experimental
results demonstrate that our approach is able to robustp kezo]
track of the true data association and accurately estinthges [21]
trajectory taken by the person. Furthermore, the resuitings
accurately resemble the corresponding environments timefu
work we aim to make our algorithm more robust, especiall$2]
with respect to magnetic disturbances. 23]
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