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Abstract—Recently there has been an increased interest in the
development of autonomous flying vehicles. Whereas most of the
proposed approaches are suitable for outdoor operation, only
a few techniques have been designed for indoor environments,
where the systems cannot rely on GPS and therefore have to
use their exteroceptive sensors for navigation. In this paper
we present a general navigation system which enables a small-
sized quadrotor system to autonomously operate in indoor
environments. To achieve this, we systematically extend and
adapt techniques which have been successfully applied on ground
robots. We describe all algorithms and present a broad set of
experiments illustrating that they enable a quadrotor robot to
reliably and autonomously navigate in indoor environments.

Index Terms—UAV, Quadrotor, SLAM, Navigation

N recent years, the robotics community has shown ¢
increasing interest in autonomous aerial vehicles, espe-
cially quadrotors. Low-cost and small-size flying pIatfexrmFig- 1. Autonomous flight of our quadrotor in a cluttered officem. The
are becoming broadly available and some of these platfordfE SPace sround the robot s seiously confned imposl emands or
are able to lift relatively high payloads and provide an inne office room from a similar view point as the snapshot.
creasingly broad set of basic functionalities. This disect o . i
raises the question of how to equip them with autonomo@é’tonomogs quadrc'Jtor. havigation n mdoor enwron.ment's
navigation abilities. Whereas most of the proposed appﬂmclfi_‘nd describe a n_awganon system including kgy fu_nctlenall
for autonomous flying [14], [32] focus on systems for outdodfSS Namely localization, planning, surface estimatiompm
operation, vehicles that can autonomously operate in inddsarn_lng, and contr_ol. Whereas a flying vehicle moves n
environments are envisioned to be useful for a variety gP '”d9°rs there S usually enough. structure to descr!be
applications including surveillance and search and refidie the environment with 2D representations. Instead of using

In such settings and compared to ground vehicles, the mgir{u" 3D repr_esentation we rely on a 2D one for the walls
advantage of flying devices is their increased mobility. augmented with the elevation of the floor. The advantage of

this choice compared to the full 3D representation is that

As for ground vehicles, the main task for an autonomous

. . : . . ..~ we can operate in a large class of indoor environments by
flying robot consists in reaching a desired location in an

unsupervised manner, i.e., without human interaction.hin {ysing efficient variants of 2D algorithms that work on dense

literature, this task is known asavigation or guidance. To grid maps instead of space and time consuming 3D methods.

address the general task of navigation one is required kthetacHavmg these functionalities adapted for the 3D case woeld b

X ST . either too slow or not accurate enough given the limited time
a set of problems ranging from state estimation to trajgctor : .

. . . constraints to make the system stable. This paper exterrds ou
planning. Several effective systems for indoor and outdogr

. . . revious work [17] by introducing improved algorithms for
navigation of ground vehicles are nowadays available PIJ, [ gimultaneously [est]imgting the altgtudepof the veghicle amgl t

Whereas the general principles O.f the navigation algomhm&evation of the underlying surface. We furthermore previd
which have been successfully applied on ground rOl:)Otsdcmdfuantitative results of our SLAM approach and discuss the

in principle be transferred to flying vehicles, this ramsie effect of different modes of the incremental scan-matcluing

not straightforward for several reasons. Ground robots qie pose stability of the robot. We also describe our albyoit
inherently stable, in the sense that by issuing a zero wgloc

. Ctor path planning, obstacle avoidance and provide addition
command results in the robot to smoothly decelerate unt"d%tails and experiments
stops. The same does not apply for flying robots that nee |
to be actively stabilized even when they are already in theOur system is a result of an integrated hardware/software
desired location. Furthermore, due to the fast dynamics ofdasign which meets several of the challenging constraints
flying vehicle compared to a ground one all the quantitigmposed by small size flying vehicles while preserving adarg
necessary to stabilize the vehicle should be computed witltegree of flexibility. It further can be operated at differen
a short time and with an adequate level of accuracy. Thuevels of autonomy. It can be used to assist a pilot by prevent
porting navigation systems for ground robots to aerialslelsi ing collisions with obstacles and keeping the position @ th
requires to fulfill more stringent constraints on both aecyr vehicle when no commands are given. It can construct a map
and efficiency. on-line while flying in an unknown environment, or it can be
In this work, we present the enabling technology foinstructed to autonomously reach given locations in a known



map. We evaluated our system on an open source quadrotc
the so-called the Mikrokopter [3]. Figure 1 visualizes our
guadrotor system and its internal state while autonomousl
flying within an highly cluttered office room.

I. RELATED WORK

In the last decade, flying platforms received an increasing
attention from the research community. Many authors foduse
on the modeling and on the control of these vehicles [8],
[11], [25], [29], with a particular emphasis on small or nacr
helicopters [10]. Hoffmanret al. [19] presented a model-
based algomhm for aUtono.mous flying with the.lr. STARIleC_Fi . 2. The quadrotor platform used to evaluate the nawgasystem is
quadrotor. Their system flies outdoors and utilizes GPS aﬂﬁsed on a Mikrokopter and includes a Hokuyo laser range rfite an
IMU measurements. Ng and colleagues [14] have developggkns IMU (2), a Gumstix computer (3), and a laser mirror (4).
algorithms for learning controllers for autonomous hepiew
navigation. Their approach allows helicopters to perform
impressive maneuvers in outdoor environments. Schefrer i ) )
al. [28] describe algorithms for flying fast among obstacles To autonomously reach a desired location, a mobile robot
at low altitude using a laser scanner. Tempelebral. [30] has to bg able to determine a _collision-free path connecting
demonstrate how to use vision for outdoor terrain mappinty ai1® starting and the goal locations. This task is known as
autonomous landing. Tourniet al. [33] and Bourquardeet path planning and requires a map of the environment to be
al. [12] used vision to estimate and stabilize the current po§Bown. Usually, this map has to be acquired by the roboffitsel
of a quadrotor. Thruret al. [32] used a remotely controlled by processing the sensor measurements obtained during an
helicopter to learn large-scale outdoor 3D models. These afXploration mission. This task of generating the map is kmow
has been some work that addressed the navigation of flyifgSimultaneous localization and mapping (SLAM). For most
vehicles in indoor environments and in absence of the Gi®5the applications it is sufficient to perform SLAM off-line
signal. Several authors used vision to control or assist tAB & recorded sequence of measurements. To follow the path
control of an indoor quadrotor [7], [20], [21]. Roberst with a sufficient accuracy, the robot needs to be aware of its

al. [26] used ultrasound sensors for controlling a flying vahiclPosition in the environment at any point in time. This task is
in a structured testing environment, while H al. [18] knoyvn gslocalizatiop. A further fundamenFaI component of a
presented a system for navigating a small-size quadrofttvigation system is theontrol module which aims to move
without GPS. Here, the pose of the vehicle is estimated By vehicle along the trajectory, given the pose estimaged b
an unscented Kalman filter. Whenever the robot has to redf localization. . _ .

a given location, a path which ensures a good observationPUe to the increased risk of damaging the flying platform
density is computed from a predefined map. These highqyrlng testing, the user should have the p055|plllty of tak-
dense observations minimize the risk of localization faitu NG over the control of the platform at any point in time.
In parallel to our work, Achtelikat al. [6] developed an indoor Finally, the more complex dynamics of a flying platform
autonomous quadrotor equipped with a laser range scander BASes substantially higher requirements on the accurateof
cameras enabling autonomous hovering in a constraint ind§&te estimation process than for typical ground-baseitiesh
environment. Recently, Celit al. [13] presented their systemAlthough in outdoors scenarios, positioning errors up to 1m
for indoor simlutaneous localization and mapping (SLAMnight be acceptable, they are not indoors, as the free-space
using a monocular camera and ultrasound. Our work is orthgjeund the robot is substantially more confined.

onal to a recent work of Bachraeh al, [9] where the authors

present a system for performing autonomous exploration and IIl. HARDWARE ARCHITECTURE

map acquisition in indoor environments. They extend the 2D Figure 2 shows a Mikrokopter [3] open source quadro-
robot navigation toolkit CARMEN [27] by adding a Rao-tor equipped with sensors and computational devices. The
Blackwellized particle filter for SLAM and an algorithm for Mikrokopter comes with a low level controller for roll, pit¢
frontier-based autonomous exploration. However, they @o mand yaw. Our quadrotor is similar to the one proposed by
provide localization, map optimization, obstacle avomior He et al. [18] and consists of the following components: an
mutli-level SLAM. Furthermore, we utilize a more robusHokuyo-URG miniature laser sensor for SLAM and obstacle
graph-based SLAM algorithm in our system allowing for mapvoidance (1), an XSens MTi-G MEMS inertial measurement
optimization and present our algorithm for estimating thenit (IMU) for estimating the attitude of the vehicle (2), a
altitude of the surface underlying the robot. This enablesLanux-based Gumstix embedded PC with USB interfaces and
quadrotor equipped with our system to fly over surfaces whoaeWiFi network card which communicates with the micro-
height is piecewise constant. controller on the quadrotor via an RS-232 interface (3), and

II. INDOORNAVIGATION OF AN AUTONOMOUSFLYING
QUADROTOR



mirror which is used to deflect some of the laser beams alomgthese discretized parameters around a given initial gues
the > direction to measure the distance to the ground (4). To efficiently evaluate the likelihood(x; | x¢—k.t—1, bt—k:t)
of a given solutionx;, we use likelihood fields [31] obtained
IV. NAVIGATION SYSTEM by the most likely map generated from the last observations

. . . . b —kit—1-
Our navigation system is based on a modular architecture 'hThe complexity of a correlative scan-matcher depends lin-
which different modules communicate via the network using a . . : .
: . . early on the resolution at which the parameters are digeeti
publish-subscribe mechanism. In our current system aicdev S . .
: : : nd on the search range. A naive implementation of this
drivers are executed on-board while the more computatipna

intensive algorithms run on a remote PC communicating ov; I'gorithm IS not adequate for our application that demands
: 9 9 OVBhth high accuracy and efficient computation. To overcome
wireless with the platform.

Since roll () and pitch ¢) measured by the IMU are in this problem, we employ a multi-resolution approach. Theaid

eneral accurate up 5. we can directly use this information is to perform the search at different resolutions, from sear
gene e up 1o, rectly to fine. The solutions found at a coarse level are then used to
within our navigation system. This allows us to reduce th

o {Zstrict the search at a higher resolution.
localization prqblem from 6DOF _n_amelyz,y, 2,4,0,9) 1o In our implementation we use a constant velocity model to
4DOF, consisting of the 3D positiofi, y, z) and the yaw

i compute the initial guess for the search and we perform the
gngletzi/;]. Ths to nIIy S?n;? ' Iu se? rtonestlmatr?ntrlese 4DOF a08rrelative scan matching at three different resolutiares, (
etecling obstacles IS the laser range scanner. Aemxdemx0.4°,2 emx2 emx0.2°, and1 emx 1 emx0.1°).

ﬁai(tad t(t)i? Id<n0W2 'n't't?rlnc?l'grst'c;ﬂ p?l\r/laLT?/f/ers rar_1d to?hth e set the search areadepending on the maximum speed
current attitude(¢, ¢) estimated by the » WE projec evmax of the vehicle and on the frequengyof the scanner as

endpoints of the laser into the global coordinate framee@ivr — s/

the projected laser beams, we estimate faey, 2 ) of We control the position of the vehicle based on the velogitie

the vehicle in a 2D map containing multiple levels per CeIL!stimated by the scan-matcher. Accordingly, the perfooasn

Tot_coTp(tarr]]se}te for th? llack of odct)m.etry mebas;rDeTents 8Fthe scan-matcher play a major role in the stability of the
estimate the incremental movements(iny, ¢) by aser  robot. In particular, we want to have a fast, accurate bt sti

scan-matching. Finally, we control the altitude of the eéhi .smooth (i.e., less oscillations) estimate. To get an iiotwit

and simultaneously estimate the elevation of the undeglylrétbout the desired accuracy, consider an error in the positio

surface by fusing the IMU accelerometers and the distanggﬂmate of+2em. Assuming a sensor frequency Wiz this
from the ground measured by the laser. Accordingly, we tra%'fror leads to a variation of0<2 in the velocity estimate
S

and map multiple levels yvith_in_an environment, WhiCh.enableoetween two laser scans. This in turn can generate wrong
our robot to correctly maintain its height even when flyingiov commands by the controller reducing stability.

obstacles like tables or chairs. In our hierarchical scan-matcher, the high-resolutiori- est
mate is affected by frequent oscillations due to the limited
A. Incremental Motion Estimation resolution of the likelihood field. Although these osciltais

The laser range scanner measures at timeet of distances could in general be filtered out by a low-pass filter, this tgpe
r, along thez-y plane in its own reference frame. We thereforéltering would introduce a phase shift in the pose and véjoci
first calculate a projection of the measured distarisgdor ~€stimate (the estimated pose is past in time). To obtain laoth
the beams not deflected by the mirror using the roll arffcurate position estimate and a smooth signal, we compute
pitch estimate from the IMU. Consequently, we calculaie final solution as the weighted mean of the estimates of
the pointsh, for all beams deflected by the mirror using &Il scan-matchers in the hierarchy. The weights of the sum
chain of transformations from the IMU to theértual laser li€ on a Gaussian centered at the finest resolution estimate.
position which accounts for the effect of the mirror. Som# Several experiments we found that the weighted average
tasks, like pose stabilization, rely on an accurate IocaslepoOf the estimates is better for control as each single estimat
estimate of the vehicle in its surroundings. To this end, w$ Shown in Table I. The table contains experimental results
can estimate the relative movement of the robot between t#@mparing the effect on the pose stability using the esemat
subsequent scans by using a scan-matching algorithm. SiRédhe individual scan-matchers versus our weighted mean
the attitude is known from the IMU, this procedure can papproach. All runs reflect experiments where the _goal of the
carried out in 2D, assuming structured indoor environmen@uadrotor was to hover at the same spot.&tm height for
A scan-matching algorithm estimates the most likely pose 8 10ng as the battery holds. To quantitatively evaluate our
the vehiclex, at timet given the previous: posSesx;_j.;_1 approach, we compare the mean and standard deviation in

a weighted average of the different resolutions has a pesiti

X; = argmax p(X¢ | X¢— ki1, Bret)- (1) affect on the control loop. This originates from the factttha
xi=(z,y,%) the weighted averaging has a smoothing effect on the pose
To solve Equation (1), we use a variant of the multi-resoluti estimate but does not include any phase shift into the system
correlative scan matcher proposed by Olson [24]. The id&nce we use a simplistic model of our quadrotor (constant
behind a correlative scan-matcher is to discretize thecheawelocity model), using the output of the weighted mean (with
spacex; = (z¢,yt, 1) and to perform an exhaustive searclthe prediction used as the initial guess for the search) is



approach— 4cm 2cm | 1cm | weighted mean| unit : . . - . .

meant) 0107 1 0.105 [ 0149 0.066 ] or thg tablg |.tself are violating this a;sumptlon using a Z@m

meanf)) -0.045 | 0.060 | -0.04 -0.05 [m) is still sufficient for accurate mapping and localizatiorhis

Stggg 8-335; 8-(1)32 8-32? 8-332 m arises from the fact that clutter in general is only visilieai

St . . . . m . f

meanfv.|) | 0.146 | 0.095 | 0.084 0075 (m/s] small portion of the current m_eas.urem.ent, wherea_s mapping

meanfv,) | 0.159 | 0.106 | 0.09 0.072 [m/s] f.e. the desk improves localization since there is a clear

std(vz|) 0.118 | 0.071 | 0.065 0.058 [m/s] difference inz-y between a desk and a nearby wall. Thus

sty ) 0117 | 0.083 | 0.072 0.057 [m/s] we restrict our approach to estimate a 2D map and a 2D
TABLE | robot trajectory spanning over 3DOR;, y, ), i.e., we map

= CTO C G GO (e} OSE S (0] OBO; . . . e . .
FFECT OF MATCHING ALGORITHM ON POSE STABILITY OF THE ROBOT 4| gpjects if they had an infinite extend. The estimate of the

equal to run a Kalman filter having a large uncertainty ofi@iectory is the projection of the 6DOF robot motion on the
the prediction. Whereas including a more sophisticated ino@ound plane, along the axis. We estimate the altitude of
for the prediction would lead to better estimates, using thin€ platform once the 2D position and the attitude are known,
simplistic strategy was sufficient for our purposes. based on the procedure described in the next section.

C. Altitude Estimation

B. Localization and SLAM Estimating the altitude of the vehicle in an indoor envi-
If a map of the environment is known a priori, purgonment means determining the global height wrt. a fixed
localization (in contrast to SLAM) is sufficient for estinmad  reference frame. Since the vehicle can move over non-flat
the remaining 4DOF of the quadrotor. We estimate the 2ftound, we cannot directly use the the beamgleflected
position (z,y, 1) of the robot in a given grid-map by Monte-by the mirror. Our approach therefore concurrently estmat
Carlo Localization [15]. The idea is to use a particle filtethe altitude of the vehicle and the elevation of the ground
to track the position of the robot. Here, we sample the neghder the robot. In our estimation process, we assume that th
generation of particles according given the relative maxem (z, 4, ) position of the robot in the environment is known
estimated by the scan matcher and evaluate the currentlpartirom the SLAM module described above. We furthermore
using likelihood fields [31]. assume that the elevation of the surface under the robot is
Our system can acquire models of unknown environmensfecewise constant. We call each of these connected surface
during autonomous or manual flights by simultaneous loealizegions having constant altitude a “level”. The extent oftea
and map the environment. The goal of a SLAM algorithm ivel is represented as a set of cells in a 2D grid sharing the
to estimate both the vehicle position and the map of the englame altitude.
ronment by processing a sequence of measurements acquiresince our system lacks global altitude sensors like barome-
while moving in the environment. Even when a map is knowers or GPS to determine the altitude of the vehicle, we track
a-priori, a local map is needed until the robot is localizethe altitude of the vehicle over the ground and map different
if the robot is running autonomously. In our system we useglevations by using a two-staged system of Kalman filters.
popular graph-based SLAM algorithm. The idea of these typasgorithm 1 describes our approach in an abstract manner.
of algorithms is to construct a graph from the measurementsin the first stage, a Kalman filter is used to track the
of the vehicle. Each node in the graph represents a positigltitude » and the vertical velocityv, of the vehicle by
of the vehicle in the environment and a measurement takesmbining inertial measurements, altitude measurememds a
at that position. Measurements are connected by pairwisigeady mapped levels under the robot. In the second stage, a
constraints encoding the spatial relations between nealint  set of Kalman filters is used to estimate the elevation of the
poses. These relations are determined by matching pairslesfels currently measured by the robot. To prevent driftha
measurements acquired at nearby locations. Whenever #hevation estimate, we update the altitude of a level onlgnwh
robot reenters a known region after traveling for long time ithe robot measures the level for the first time or whenever the
an unknown area, the errors accumulated along the trajectesbot reenters it (i.e., enters or leaves that particulzelje
become evident. These errors are modeled by constraint$n detail, the first Kalman filter estimates the height state
connecting parts of the environment that have been obsereee: (z,v,) and the corresponding uncertain®y. First, we
during distant time intervals and are known in the SLAMbredict the current altitude and velocity;f given the previous
community adoop closures. To recover a consistent map weestimate,z;—1,%,,_,, and the acceleration measured by the
use a stochastic gradient descent optimization algoritma tIMU (see line 4 of Algorithm 1).
finds the position of the nodes which maximizes the likelthoo The beams deflected by the mirror can measure more than
of the edges. The optimization approach is discussed ane level simultaneously. For instance, when flying ovebéeta
detail in [16], and an open source version is available anhcan happen that one fraction of the beams is fully reflected
OpenSLAM [4]. by the table, some beams are partially reflected by the table
Again, we restrict our estimation problem to 4DOF, sincand partially by the floor, whereas the remaining beams are
the attitude provided by the IMU is sufficiently accuratedor fully reflected by the floor. We therefore search in the local
mapping purposes. Furthermore, we assume that the vehiglgnity of the current multilevel-map for all levels which
flies over a piecewise constant surface and that the indammuld have generated one of the measured altitddesh,
environment is characterized by vertical structures, Viledls, (assuming the robot’s altitude #%). This step is indicated in
doors, and so on. Although trash bins, office tools on a tadlee 5.



If we found at least one correspondence, we use them <r1®, 02> of the joint level has the following values:
calculate a virtual measurement to the ground (see line 7). ) ) 5
We use the matched levels from the current map and the _ ophy+ojhy 52— 0%
corresponding beams to calculate a single measurement. In - oltop of+op /)’
other words, we calculate the measurement we would obtain. o o ]
if no obstacles were present underneath the robot and use HiiS Step is indicated in line 17 of Algorithm 1.
information for the measurement update of the Kalman filter
as shown in line 8. Algorithm 1 Multilevel-SLAM
However, when the robot explores the environment, it cdAput: beams deflected by mirror at timeh,
happen that none of the current beams= h, falls into a Input: previous multilevel mapM
confidence region of a level in the current map, ile.= (. Input: elapsed timeAt
In this case, we cannot create a virtual measurement and tHigut: current posex; = (z,y:) // output of SLAM module
are unable to perform a measurement update of the filter. TIR@Ut: previous height state; 1 = (z:—1, v, ,)
prediction, therefore, is then the best estimate of the timbolNput: previous height state uncertainy,, ,
altitude as described in line 10. Input: z-acceleration and uncertainty;, o, // from IMU
Given the estimated altitude of the robot, we can now updd®tput: current height statez, >,
the current multilevel map. Recall that the beams deflecged Qutput: current multilevel mapM
the mirror can measure more than one Ieyel simultaneously. ¢,nction Multilevel-SLAM
We therefore cluster them into neighboring sets. Each of.
thse sets is gssumed to originate from a smgle level ar}g /I KE is short for Kalman Filter
it is parameterized by the mean and the covariance matriy. (it,i%) = KF(z,_1, %, ,).predictionSteplt, a., 0.)

_calculated by the_bt_aams in the se_t. The outcome of_th|§ psoces. [ _ M.at(x, + Ax).getExistingLevelsMatchingy. z,)
is the setL, consisting of the estimated levels as indicted e it g £ ) then

line 13. L ) 7. (m,&,,) = createVirtualHeightMeasuremehi( E)
We assume measurements not falling into a confidencg (21,%.,) = KF(2,..,).measurementUpdaté( 5,,)
9 zt) — ) zZt]* m

region of existing levels in the local neighborhood to be9:

)

1st stage: update height estimate

. else
generated by a new floor level. These new floor levels can s
. . . . . . : (Zt, Ezt) = (Zt722t)
be directly included into the map, as shown in line 14 in,. end if
algorithm 1. For all measurements, falling into the confien 12/ 2nd stage: update map

region of a level in the map, there .exist two ppssibilitieiﬂ;h& 13 L — estimateLeveld(;, z)
this level hgs bgen already seen in the previous time-seep, i .y M.addNewLeveld,, x,)
the robot is flying over the table and thus it has seen t M = M.updateExistingLeveld(, x,)
corresponding level before, or it is currently enteringeaving M — M.extendExistingLeveli(’ x2)
this particular level. In the latter case, we can use theectirr M — M.searchForLoopCIosuréqo
altitude estimate in order to update the altitude of thellave . returnz,.X. M
the map (line 15). The elevation of each level is tracked b¥9: end funct’ionzw
an individual Kalman filter.

Since we explicitly store objects in 2D with an extend:iy
rather than individual levels per cell, we seek for thoselev To summarize, we store a level as a set of 2D gnd cells

present in the neighborhood of the map, that are explained fgyresenting the area covered by the corresponding object.
one of the measurements currently obtained. If such a lsvekirst, we estimate the current height of the robot given the
found and not present at the current location, we extend tiigown levels in the multi-level map. In a second step we
level to the current cell, as shown in line 16. ~ update the map, given the estimated altitude of the robot.
Note that the robot observes only a limited portion ofjere, a level is constantly re-estimated whenever the ieehic
the underlying surface. Thus it may also happen that te@ters or leaves this specific level, and the data assatiatio
robot “joins” the surfaces of different levels to form a news resolved by the knowriz,y,) position of the vehicle.
one. Figure 3 illustrates this situation. Inltlally two &S Fina”y’ measurements not exp|ained by any level present in

corresponding to a chair (Level 1) and a table (Level 2) afRe map are assumed to be generated by new levels which are
identified (a). The robot then left the table behind, makestRen included in the map.

turn, and flies over a different area of the same table. Since

Level 2 is not mapped in the neighborhood of the current pose, | )

our system creates a new level (for the same table), notedthsHigh-Level Control for Pose and Altitude

Level 3in (b). Finally, the quadrotor continues to the arajly The high level control algorithm is used to keep the vehicle

covered area of the table which introduces an intersectionio the current position. The output of the control algorithm

the current Level 3 and the previously generated Level 2. &se variations in the roll, pitch, yaw, and thrust, denoted

a consequence, it joins Levels 2 and 3 (see (c) and (d)). respectively asi,, ug, uy, andu,. The input are the position
When two levels,L’; and L, having altitudesh; and h; and the velocity estimates coming from incremental scan-

and covariancesf ando? are merged, the Gaussian estimatmatching. A variation of the roll translates in a motion ajon




c) i d) [

Fig. 3. Example of level joining during the estimation of thétatle of the vehicle and of the elevation of the underlyingfaces. Each level is represented
as a set of contiguous cells in the 2D grid that share the saevat&n. The robot starts exploring an office environmeritiallly it recognizes two levels
(Level 1, and Level 2), corresponding to a chair and a tableSabsequently it flies away from the table, turns back amd ftiver a different region of the
same table (a). This results in the creation of the new Levdlhgn the robot keeps on hovering over the table until it apghes the extent of Level 2
which has the same elevation of Level 3, being originated lystime table. This situation is shown in (c). Finally the radrters Level 2 from Level 3.
Our system recognizes these two Levels to have the sameiefevatcordingly it merges them and updates the common elevastimate (d).

the y axis, a variation in the pitch results in a motion along
the z axis and a variation of the thrust results in a chand
in the vertical velocity. We separately control the indivéd
variables via PID or PD controllers. Since in our case &8
control commands are dependent on the current pose estimy®
our high level control module runs at a 10Hz, since the las
scanner provides measurements at exact this rate.
Note, that the Mikrokopter (and most of commercial avail- ) )
able platforms) comes with low level controllers forrolfah, % O (8= bency fr leaming & mapen betucer e comsc
and yaw, thus we do not have to take care about the cont§@hdrotor and monitoring the other one using the IMU.
of the individual motors, but of the control of commands
resulting in a desired angle. In our particular case, the Idi Figure 4.
level controller of the Mikrokopter quadrotor runs at 500Hz The calculated commands are sent directly to the micro-
Since commands for the yaw on common p|atforms result gentroller via RS232 which is in charge of the low level cohtr
how fast the quadrotor should turn and not how far, theé®ll, pitch, and yaw) of the platform. For safety reasome t
parameters reflect the users wish of the robots aggressiveri#ser can always control the vehicle via a remote control and
wrt. the yaw rotation. In contrary to this, commands for rolpur system mixes the user and the program commands. During
and pitch result in a desired angle for which independeftir experiments, we allow the programs to perturb the user
mapping functions must be learned. In order to learn t§@mmands by-20%. In this way, if one of the control modules
mapping for our quadrotor, we fixed one axis of the vehicle f@ils the user still has the possibility to safely land théiete
an external frame allowing the vehicle to rotate along tieent Without any loss of time since he does not need to press any
axis only. We learned the mapping function by monitoringutton first.
the current angle measured by the IMU compared to the sentn particular, we control the pitch and the roll by two
command. Our test bench for learning this mapping is showmdependent PIDs that are fed with thend they coordinates




of the robot pose. The control function inis the following: determine a possible change in altitude the robot would have
y to take when moving to a nearby cell. A change in altitude is
up = Ky (2 —2") + Ki - ea + Ky - o, ©)  reflected by increasged traversagility costs progportionaihe
Herex andz* are the measured and the desizepositions, distance in the:-direction. Furthermore, the cost function of
v, is the corresponding velocity, ane, denotes the error & state(z,y, z) of the robot depends on the distance of that
integrated over time. The control in the is analogous to location to the closest vertical obstacle in the map.
the control inz. Note, that the integral part could be omitted Once we have the 2.5D trajectory calculated with D* lite we
(i.e., K; = 0), but we have encountered an improved hoverirgdgment it with they) component. Since the laser scanner is
behavior if a smallK; is used. This originates from the factheading forwards, it is desirable that the robot turns tdsar
that in our case only integer values can be transmitted to tthe direction of flight first to avoid collisions. On the other
micro controller although the desired command is a floatezalthand, we want the quadrotor to perform small maneuvers, like
We control the yaw by the following proportional controller flying 10 cm backwards, without turning first. To achieve this
behavior we calculate the desired angle which would result i

uy = Kp - (= ¢7). (4) flying forwards wrt. the local frame of the quadrotor. Traglin
Here v andv* are the measured and desired yaw andis off the costs of rotation versus costs of moving to the desire
the control input. cell without rotating first allows the robot to perform pure

The altitude is controlled by a PID controller which utilize Sideéwards or even backwards movements and thus prevents
the current height estimate the velocityv,, and the current the vehicle from performing unnatural maneuvers.

battery voltagel/, respectively. The contral, is defined as ~ Instead of switching to a new plan at every point in time,
we try to re-use the existing solution whenever possible. A
u, =C(U) + Kp- (2= 2") + K; - e, + Kq - vz, (5) new plan is generated only when the actual plan is not valid

with K, K; and K, being the constants for the P, I, and fRnymore due to dynamic obstacles or when a certain period
py X s by . _ .

part andC(U;) being the thrust command offset given thé’f time has been reached = 500 ”.‘S)- The Igtter constraint
current battery voltagé/, respectively. Here* denotes the enabl(_es us to correct f_or detours in the trajectory that have
desired height and, denotes the integrated error. Includingfeen mtroduced to avoid obstacles_ that are no longer Fresen
a thrust command offse€ (U;) allows us to treat the system n our |mp_lementat|on, we use a grid resolution of 4 cm. With
as stationary, and therefore to use constant coefficiemts ?3?5(3_ seltt|1nogs, thetrp])l?nner reqt:wsssbot:t 50.' 80ms tobae(rjnpu
the PID. We learned’(U;) by monitoring the thrust and the @ ypica m path from scraich. Re-planning can be done

battery level of the vehicle in an expectation—maximiznattioIn less than 10 ms. Dynamic obs_tacles are detected by the
fashion. We started with a PID control withoat(U;) and planner by c9n5|der|ng the endpoints of the laser beams_ that
computed the average thrust command required to keep not explained by the knpwn map (backg_round subtraction)
current altitude using several test flights. For each batexel Additionally, we run a reactive obstacle avoidance module o

U, we computed the average thrust command required to k&%rd in parallel based on potential fields [23].

the current altitude. In subsequent flights we used thisebffs

as an initial guess for’(U;) and repeated the experiments V. EXPERIMENTS

resulting in an refinement faf'(U;) until no major change in  In this section we present experiments that show the per-

the estimated offset appeared. formances of each of the modules presented in the previous
section, namely: localization, SLAM, multi-level mappijng

E. Path Planning and Obstacle Avoidance autonomous pose stabilization, path planning, and olestacl

. . avoidance. Videos of a series of different flights can be oun
The goal of the path planning module is to computgP the Web [5]
al

a path from the current location to a user specified go
location which satisfies one or more optimality criteria and o

is safe enough to prevent collisions even in the case df Localization

small disturbances. Safety is usually enforced by choosingUsing 2D grid maps for localization enables our system
a path that is sufficiently distant from the obstacles in thte operate with maps acquired by different kinds of robots
map. Finally, due to the increased degrees of freedom ofand not necessarily built by the flying vehicle itself. In
flying vehicle compared to a ground robot, the path shouttlis section we present an experiment in which we perform
be planned in 4DOF space instead of 3DOF. In our systegtobal localization of the flying quadrotor in a map acquired
we use D* lite [22], a variant of thed* algorithm that can with a ground-based robot. This robot was equipped with
reuse previous solutions to correct an invalid plan rathant a Sick LMS laser scanner. The height of the scanner was
recomputing it from scratch. Since directly planning in 4BO80cm. Throughout this experiment, the UAV kept a height
is too expensive for our system, we compute the path @i 50cm £10cm and the particle filter algorithm employed
two consecutive steps. First, we use D* lite to compute B000 particles. Given this number of particles, our curren
path in thex — y — 2z space, but we only consider actionsmplementation require$ ms per iteration on a Dual-Core
that move the robot in the 2D spaee— y. For each(z,y) 2 GHz laptop, while scan matching requifems on average.
location we know from the multi-level map the elevation af thFigure 5 shows three snapshots of the localization process
surface underneath the robot. This known elevation is usedat three different points in time. The top image depicts the
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Fig. 6. Map of on office building built with our approach usithge quadrotor.
The labels 1-4 reflect the locations of individual markersdufee evaluating
the accuracy of our mapping approach. Red triangles indibat@ose of the
corresponding camera images. The clutter in the bottom of thpeariginates
from the seating containing horizontal slots (see bottgghtrimage).

marker || loop1 | loop2 | loop 3 | loop 4 ground-truth
1 111m | 111m| 1.11m| 1.10m 1.11m
Y1 -7.50m | -7.51m | -7.50m | -7.50m -7.50m
T2 -6.21m | -6.21m | -6.21m | -6.21m -6.21m
Y2 -9.21m | -921m | -9.21m | -9.21m -9.21m
z3 -7.85m | -7.85m | -7.85m | -7.85m -7.85m
Y3 -3.83m | -3.83m | -3.83m | -3.82m -3.82m
T4 -0.01m | -0.01m | -0.01m | -0.01m 0.00m
Y4 -0.00m | -0.00m | -0.00m | -0.00m 0.00m
- TABLE Il
Fig. 5. Global localization of our quadrotor in a map previguecquired by ~ ESTIMATED AND MANUALLY MEASURED LOCATIONS OF THE MARKERS
a ground-based platform. The blue and the green circle lgighthe current FOR THE FLIGHT CONTAINING FOUR LOOPS IN TOTAL

estimate of the patrticle filter and the true pose respectiayticles are shown

as black dots within the free_ space. Top: initial situatibtiddle gnd boytom: Corresponding markers. Table Il shows the manua”y medsure
after about 1 m and 5m of flight. In the latter case, the quadiistlocalized. and the estimated poses of the markers for all loops. As can be
initial situation, in which the particles were sampled onifily ~ seen, both, the relative error between the individual |cams
over the free space. After approximatelyn of flight (middle the global pose estimation wrt. the manually measured groun
image), the particles start to focus around the true poskeof truth have a maximum error of 1cm. In this experiment,
vehicle. After approximatelyy m of flight the quadrotor was the incremental mapping during the first loop was accurate
globally localized (bottom image). The blue circle indesit enough €1cm error) thus no optimization was needed since

the current estimate of the filter. all subsequent loops were also re-localized in the existing
map. We therefore also evaluated each loop independently of
B. S AM each other without enabling graph optimization. The resoiit

the individual loop flights for marker 4 (origin) are shown in

We also evaluated the mapping system by Igttlng the quad{gble Il (first row). The worst flight (2nd loop) resulted im a
tor fly four loops (approximately 41 m each) in a rectangular

- . . ; error of approximately 0.37 m total distance to the origiheT
shaped building of approximate corridor size 1052 m. The o . . 7
result of our SLAM algorithm is shown in Figure 6. To'€maining rows in table Il show the effect of using differen

quantitatively evaluate the accuracy of our mapping sy grid resolutions at the finest level of our hierarchical magp
placed markers on the floor (labeléd...,4) and manually approach on the accuracy of the individual loops.

landed the quadrotor close to the markers. Since we neVefarker || foop T | Toop 2 | loop 3 | loop 4 | finest resolution
perfectly landed on those we manually moved the quadrotor z4 -0.0Im | -0.35m | -0.08m [ -0.17m 0.01m
i ; ; ; -0.00m | 0.12m | -0.07m | 0.04m ’
the remaining centimeters to match the predefined spots. Thi 54 o m T o5om 036 m T o.64m
.. 4 -0. -0. -0. -0.

enables us to measure three types of errors: the re-logatiza| ., 020m| 023m!| 011m | 0.33m 0.02m
error, the absolute positioning error and the error in open- x4 -09Im | -059m | -0.54m | -0.60m 0.0

i i : 028m| 0.38m| 029m| 0.29m Lam
loop. The re-localization error is the difference betweka t L ¥4
current estimate and the estimate of the same real world TABLE Il

pose in the previous |00p. The error in open—loop iS the re_COMPARISON OF SINGLE LOOPS FOR DIFFERENT GRID RESOLUTIONS
localization error without enabling graph optimizationher

absolute error is the difference between the estimatedgude ) ] o

the ground truth. To measure the absolute error we manudfty Multi-Level SLAM and Altitude Estimation

measured the relative locations of the markers and comparedn the following we show the typical behavior of our altitude
it to the positions estimated by the robot when landing to thestimation module. In this experiment, we let the robot fly
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Fig. 8. Experiments for the autonomous stabilization of yajvaf@d pose
(b). During the yaw stabilization experiment, the quadrat@s required to
rotate t0o0°, while the user manually turned the robot once in a while to a
random orientation. Within the pose stability experimere fuadrotor was
set to hover a(0,0), but was manually moved backwards once in a while
and required to fly autonomously back to the initial pose.

»®

via the remote control. When the user released the remote
control, the vehicle always returned back to its desired yaw
with an error of£2°. Figure 8(a) plots the outcome of a typical
run for yaw stabilization.

b) Altitude control: Similar to the experiment regarding
the yaw, we ran an experiment to assess the behavior of
the altitude control. In this test we set the desired alétud
to 150 em. In the beginning the vehicle was hovering over
the ground. After enabling the stabilization the vehickrtsd
climbing to the desired altitude. The desired height wag kep
R by the vehicle up to an error af10 cm. The results are shown
- - in Figure 7. Note, that this experiment was performed while

] raw measurement-——— 0.8 _l—
¥ g » ‘ ) é - - -
14 Nlmy " 08 Nl flying over different elevations. .
12 07 c) z,y control: Finally we show an experiment for the

loop closure

os 0% pose stabilization only. Note, that the pose stability isragly

’ 0.6 . .

06 05 affected by the latency of the system (i.e., the time needed

2‘2‘ 05 to calculate the command given the laser data). Although

o 04 P incremental motion estimates take only 5ms in average (with
560 570 580 590 600 610 620 560 570 580 590 600 610 620 H H

Fig. 7. Estimation of the global height of the vehicle and timelerneath a max'm”m of 15 ms) we have. to deal with .a .Iatency of

floor level. Whenever the quadrotor moves over a new level, thevation 120 ms in average due to the wireless transmission and due

is used to determine a level transition. The estimate of thghheif each to the sensor buffer. A typical run including autonomousepos

level is refined whenever the robot reenters that particléeel. Top: the lio ati ; ; ;
office environment. Middle: the corresponding map after aatioously flying stabilization is shown in Figure 8(b)' Here, the quadrotasw

over the vertical objects with a desired altitude of 150 cmit@n left: a S€t to keep the initial pose ¢f),0) and once in a while, the
plot showing the estimated altitude of the vehicle over timeswe the raw user used the remote control to move the quadrotor around 1 m

. The corres i i 11

T ot et voveTS g i e st oo DACKWards. The quacrotor then autonomously moved back to
the desired position. Depending on the latency in the system

autonomously in a typical office containing chairs, tabled a the pose oscillations are typically arouac0cm.

lots of clutter. The chairs have a height 48cm and the

tables are arranged next to each other having a height Eof Path Planning and Obstacle Avoidance

77cm. During this mission the system flew once over the | this section we present an experiment demonstrating our

chair arjd several times over the tables Where. it also flew i@ orithms for path planning and dynamic obstacle avoidanc

loop. Figure 7 shows a snapshot of our multi-level mappinghe quadrotor was given a goal point approximately 5m in

system during this mission. As can be seen from this figuigont of it. A person was standing on the left (see the shaded

our algorithm correctly detected the objects at correspand greq in Figure 9 entering the corridor when the quadrotor

levels. The estimated heights of the chair and the tables Wgkoved to its desired goal. The second image shows the

48.6 cm+2.7cm and74.9 cm+2.8 cm respectively. situation when the person is completely blocking the rabot’
path. In this case the quadrotor hovered around the last vali
D. Pose control way point since there was no valid plan to the goal anymore.
Since the system is stabilized by independent controlle&hen the person moved to the left again, the quadrotor was
we discuss the result of each individual controller. able to follow a de-tour as shown in the right image of

a) Yaw control: For testing the yaw controller we set aFigure 9. Note, that the snapshots show the endpoints of the
desired yaw of)° and once in a while, we turned the helicoptelaser only. Although it looks like the quadrotor might hate t



Fig. 9. Experiment for path planning and dynamic obstacledamie. The
quadrotor is given a goal point 5m in front of it. The plannedtpis shown
in the left image. A person enters the corridor (shaded aned)btocks the
robot’s path, which results in an invalid plan. The quadrdk@refore hovers
around the last valid way point (second image). In the thirdgenthe person
moved back leaving the quadrotor enough space for a de-tour.

space to fly around the person in the second image, thergiig

no valid plan due to the safety margins around the walls.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a navigation system for
tonomous indoor flying utilizing an open-hardware quadrot

(8]

(9]
(20]
(11]
(12]
(13]
(14]

(15]

(17]

8]

platform. We described a complete navigation solution that

approaches the different aspects of localization, mappiath-

(19]

planning, height estimation, and control. Since we do not

rely on special characteristics of the flying platform likest
dynamics model, we believe that our system can easily
adapted to different flying vehicles. All modules in our gyst
run on-line. However, due to the relatively high computadio

58l

(21]

cost of some algorithms only a part of the software runs of#2]

board on the ARM processor whereas the other part runs
board on a laptop computer. Some preliminary tests make

983

us

confident that the whole system can run on-board using tRRél
next generation of embedded computers based on the Atom

processor. We provided a wide range of experiments and sogws

videos that highlight the effectiveness of our system. hurkl
work we plan to add a time of flight camera into our syste
We believe that this technology can be effectively integplat

Moe)

and will allow us to relax the assumption that the vehicle

moves over a piecewise planar surface.
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