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Abstract

The goal of the Flourish project is to bridge tlag dpetween the current and desired
capabilities of agricultural robots by developingadaptable robotic solution for precision
farming. Thereby, combining the aerial survey cdpas of a small autonomous multi-
copter Unmanned Aerial Vehicle (UAV) with a multipose agricultural Unmanned
Ground Vehicle (UGV), the system will be able tovay a field from the air, perform
targeted intervention on the ground, and providailel information for decision support, all
with minimal user intervention. The system can tepted to a wide range of farm
management activities and different crops by chapdifferent sensors, status indicators and
ground treatment packages. The gathered informatiarbe used alongside existing
precision agriculture machinery, for example, bgMuding position maps for variable rate
fertilizer application.

The presentation will introduce the Flourish cotison and the concept of this project using
the results of the first year field campaign. Tvey lparts of the project will be shown in
more detail: first, the field mapping by means ofldAV. Particularly, the field 3D
reconstruction approach (Khanna et al. 2015) aediie of multi-spectral camera data to
derive weed pressure or crop property maps (Liates@al. 2014) with examples for
subsequent crop management decision support. Thadeart will show the automated
image acquisition by the UGV and a subsequent plassification with a four step pipeline
differentiating crop from weed in real time (Lottetsal. 2015). The presentation will close
with a short outlook on not shown project packddesautomated orientation and movement
of the UAV and UGV and the project’s time line.

Keywords: precision farming, agriculture, multispectral cam UAV, UGV, 3D
reconstruction, trait detection

Zusammenfassung

Das Projekt Flourish zielt darauf ab die Liicke nlen den derzeit vorhandenen und den
gewunschten Moglichkeiten landwirtschaftlicher Rsau schliel3en. Dafur werden die
luftgestitzten Erkundungsfahigkeiten von kleinetoaamen Multikopter-Drohnen (UAV)
mit unbemannten landwirtschaftlichen Mehrzweck-Eahgen (UGV) kombiniert. Das
System soll fahig sein ein Feld aus der Luft Zwueden, zielgerichtete Kultivierungs-
malnahmen im Feld durchzuftihren und detailliefierinationen zur Entscheidungs-
unterstitzung zur Verfligung stellen, alles mit miaiem Benutzer-Input. Das System kann
durch geeignete Wahl der Sensoren, Statusindikatord Feldbehandlungs-module der
UGV an viele KultivierungsmafRnahmen und verschiedgatzpflanzen angepasst werden.
Die gesammelten Informationen kénnen auch mit ggerglandwirtschaftlichen Maschinen
genutzt werden, zum Beispiel fur das bedarfsgeeegbsbringen von Dinger.



Die Prasentation stellt das Flourish-Konsortium dedsen Konzept anhand von
Versuchsergebnissen aus der ersten Feldmesskampag@svei wichtige Unterprojekte
werden genauer betrachtet. Gezeigt wird zuerstelgkartierung mittels UAV, insbesondere
die 3D-Rekonstruktion (Khanna et al. 2015) und Mpkktralmessung der rAumlichen
Verteilung von Unkraut-Druck oder Nutzpflanzeneiggmaften (Liebisch et al. 2014) mit
einer anschlieRenden Entscheidungshilfe fir Feddnentionen. Der Zweite Teil befasst sich
mit der automatischen Bilderfassung am UGV undddeaus resultierenden Pflanzen-
klassifizierung zur Unterscheidung von Kulturpflanmd Unkraut mittels eines
Vierschrittverfahrens in Echtzeit (Lottes et al18) Die Prasentation schlief3t mit einem
kurzen Ausblick auf nicht gezeigte Teilprojekte wie automatische Orientierung und
Bewegung der UAV und UGV und der geplanten Projitlinie.

Deskriptoren: Prazisionslandwirtschaft, Multispektralkamera, UAYGV, 3D-
Rekonstruktion, Eigenschaftserkennung

1. Introduction

Today’s agriculture needs to improve its resouse efficiency for farm inputs like

fertilizers and pesticides, and thereby reducirggscand detrimental effects on the
environment. Precision farming is a technical apploto facilitate such needs. Many
applications today improve single field managentasis such as precision fertilizer
application in form of variable rate applicatiorcaaing to tractor based sensor information
or for large field areas based on satellite infdroma However, there is a gap between close
to the crop and far away sensing level and in lfidéixy and applicability of systems.
Unmanned aerial vehicles (UAV) might help to bridige remote sensing gap, because they
allow monitoring the fields with relatively high @& without relying on a machine driving in
the field and thereby collecting data before theadntervention in the field starts. Their
relatively high flexibility should also allow freg@at monitoring necessary for short-term
reactions for field management and intervention.

To build autonomous robots for farming applicaticseveral challenges need to be
addressed, among them robust perception for od-Giération. This paper will focus on
information derived from sensors within an exemplabotic crop management chain on the
example of sugar beet. Early weed detection anttalds a very important step during the
cultivation of this cash crop because of its lowngetition potential against weeds during
early growth.

2. Flourish project

The goal of the Flourish project is to bridge tlag dpetween the current and desired
capabilities of agricultural robots by developinfiexible and adaptable robotic solution for
precision farming. Thereby, combining aerial sureapabilities of small autonomous multi-
copter UAV with a multi-purpose agricultural UG\Mjch a system should be able to survey a
field from the air, perform targeted interventiomtbe ground, and provide detailed
information for decision support to the farmer,vailih minimal user intervention.

2.1 The flourish concept

To build autonomous robots for farming applicaticseveral challenges need to be
addressed, among them robust perception for od-Giération and information retrieval for
agronomic tasks or decision support. The flouriskgets aims to investigate two main
scenarios: 1) weed detection and subsequent congasures in the field and 2) detection of
crop nitrogen status from UAV. Additional scenarsagh as crop disease infestation or water
status are being investigated as they occur.
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Figure 1: Visualization of the Flourish concept

2.2. The consortium

The Flourish consortium consists of seven highlglifed partners with know-how from
robot design to crop management. The involved pestare the Autonomous Systems Lab
and the Crop Science Lab of ETH Zurich, the depantnfor Photogrammetry and Remote
Sensing at University of Bonn as part of the Facidt Agriculture and the Institute for
Geodesy and Geoinformation, The Bosch Group andghbbsidiary Deepfield robotics, the
French Centre National de la Recherche Scientif{(NRS), Sapienza Universita di Roma,
Department of Computer and System Sciences andiSBAM - Agency for Agro-food
Sector Services of Marche region (ltaly). More mifiation can be found under
http://flourish-project.eul/.

3. Used sensors and robots

In this study two low cost unmanned aerial vehi¢léaV) were used with two different
sensor setups. UAV one used for the 3D reconstmi¢éists was a DJI Phantom equipped
with an 11 megapixel GoPro Hero R 2 camera (GoRm, USA) with a fisheye lens
mounted. The second UAV used for the multispechabping was an IRIS+ (3DR, Inc.,

USA) equipped with a Gamaya OXI VIS NIR multispatitamera set consisting of two

2 megapixel snapshot multispectral imagers 16 M8d450-670 nm), 25 band NIR (600-
900 nm), and an integrated x86 computer. This intagystem has a weight of 250 g, and the
dimensions are 9 x 6 x 4 cm.

The UGV was a Deepfield Robotics Bonirob V3 equippeath a JAI AD 130 camera for

weed detection. This camera is a two CCD 1/3" -nséctral-camera, with the first being a
color interline transfer CCD sensor with a Bay#efiand the second a monochrome interline
transfer CCD sensor with a narrow band-pass NiBrfillhe resolution is 1296 (H) x 966

(V) pixels. The pixel size is 3,7@m and the active sensor area 5.05 mm x 3.66 mwadt

used at a frame rate of 30 full images/s.

4. First results

4.1 Field information derived from multi-spectral images

The aim of this project part is to derive infornaatiabout field and crop status such as weed
pressure or leaf greenness maps (Liebisch et &)28y using multispectral sensors adding
more channels to the above mentioned measuremeaiitity. By combining indicators we



aim to facilitate and improve crop management decisupport. This can be by delivering
weed pressure maps, variable rate application feagertilizers and pesticides (fungicides
and herbicides) but also by improved path planfingnformation retrieval and intervening
machinery in the field.

Canopy cover is a well-established crop growthaattir, which can be measured with
several sensors from several remote sensing I@velsisch et al. 2014, 2015a+b, Grieder et
al. 2015). Thus it may serve as a standard indidialcing in situ data to growth potential by
using simple or complex growth models (Figure &)this way it can be used to classify
values into three classes: 1.) optimal coveradeatifig a healthy crop, 2.) sub-optimal
values indicating growth reduction caused by biotiabiotic stresses or 3.) superior to the
growth curve coverage indicating a high risk of dé® be present.
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Figure 2: A) Field derived canopy cover developmenB) NDVI map of the sugar beet field,
C) optimal grown field plot, D) suboptimal grown field plot and E) weed infested field plot.

Once this classification is done additional infotima can be retrieved by involving other
analysis or data acquisition steps. Other speicttdatators may involve leaf greenness as
indicated by the triangular vegetation index (T@initrogen nutrition status as indicated by
the photochemical reflectance index as shown bisah et al. (2015b). Crop architectural
information can be derived by 3D reconstructiore(details in section 4.2). Follow up flight
planning might be necessary when the obtainedislaat sufficient for deriving a specific
management decision. In such cases the informegioieval path for the UAV might be re-
planned (in real time) to follow uncertain infornwat points getting information with higher
ground resolution or even close up images of regwith high weed pressure to achieve
information about weed species and leaf symptoms.



4.2 Field 3D reconstruction from UAV images: heighestimation pipeline

The data was collected with a GoPro Hero R 2 wiisleeye lens mounted. The combination
of a wide angle lens with a high resolution semgees a small ground sampling distance
(1~5 cm) while maintaining a high overlap (abou¥@M®between consecutive images which
are essential in order to obtain satisfactory 3t»nstructions. The images were post
processed using the software Pix4D (http://www.dixdm/) to obtain 3D point clouds such
as the one shown in Figure 3. For this purposesdiftevare searches for points or features
that are recognized in several images in ordestimate their 3D coordinate. It further takes
into account the positions of these points in thgle images in order to estimate the
calibration of the camera. The camera model in isithen used to optimize the 3D map. In
particular it corrects for the radial distortiontroduced by the wide angle lens.

Figure 3: Left: Dense point cloud of a winter wheagenotype trial generated from aerial images using
Pix4Dmapper by Pix4D. The numbers indicate the ploindices used for referencing. Right: Segmented
point cloud generated using automated thresholdingased on the excess green index and Otsu’s method.
Green points represent winter wheat and pale browmepresents background.

In order to extract the plant height, soil pointgstbe distinguished from plant points. The
segmentation was based on RGB data using the egiasss index introduced in Gitelson
(2004) to determine an green intensity value (i)gfach point i in the point cloud: I (i) =
2G(i) - R(i) - B(i). In the resulting intensity pdicloud, green plants have a high intensity
value in contrast to a low value for the backgroumaduding soil surface, shadows, stones
and plant debris. Once this intensity value is meteed, we use Otsu’s method (1975) to
determine a global threshold and extract a binamgtgcloud from the colored one. This
method has the advantage of being fully automatatewiving accurate segmentation for
images and point clouds collected under varyingrilhation conditions or with different
cameras. An example of such segmentation is showigure 4.

Figure 4: Image overlaying the automatically segmded vegetation (bright green) onto the original
image.



For approximation of the ground level a linear esgion surface is fitted through all vertices
corresponding to the ground points A as determinesegmentation. The resulting
approximation is shown in Figure 5 left. All vegg of the point cloud are expressed in a new
frame of coordinates B via a vector transformatieimg a rotation matrix (Khanna et al.
2015). The new frame of coordinates is chosen thattthe %-ys-plane corresponds to the
mean ground level. In order to analyze the pltgssellation was performed to subdivide
each plot into smaller rectangles of size 0.1 ml*r@ containing enough green points to be
representative of the geometry. The plant heighttban be calculated as the distance
between the upper vertices within a small tile sredground. Additionally, a more detailed
representation of the soil geometry, based ondheertices directly below the plants, is
needed. To model the ground surface based on thieegewithin a plant’s neighborhood, a
multinomial regression for the points within eadbtps carried out. Here, a second order
two-dimensional polynomial function is fitted taetiertices Figure 5 right. The method can
be adjusted to other functions. The plant heigfinily calculated as the §%ercentile to
exclude potential outliers as used for height etiba from terrestrial laser scan (Friedli et al.
2016) and UAYV derived point clouds (Khanna et 811%).
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Figure 5: Left: Linear approximation of the ground surface to determine a scene’s global orientation.
One can observe the large variation in z coordinagecreating the need for local regression surfacesif
accurate height estimation. Right: Local regressiosurface along with the corresponding ground points
from the point cloud for one plot. From Khanna et 4. 2015.

4.3 Automated crop-weed classification by the grouhunit

The here shown vision-based classification systammbbile robots is targeted to separate
sugar beets from weeds and therefore executepfmaipal steps. The method is described
in detail by Lottes et al. (2016). It first sep&sathe vegetation from the remaining parts of
the image, i.e., mostly soil by making use of a NEhfeshold (Figure 6). Then, a series of
spectral and object based features are computbe image regions corresponding to
vegetation. A random forest decision tree apprascised for performing the classification
based on the computed features. In a last stepeilgbborhood information between
classified regions is taken into account throughikde random fields to improve the
individually computed classifications of the rand@rest. The approach can also exploit
spatial priors, for example, if value crops wereglaly planted at a known distance.



Figure 6: RGB (A) and NIR image (B), NDVI (C) and nasked NDVI image according to the vegetation
detection (D). Key points (white) for classificatio at a 3 mm distance on the object and an example
neighborhood (E+F). Blue represents the region thas considered for the feature computation.

The approach was evaluated on sugar beet platvi® &b four leaf growth stage and weed
plants that grew on test fields near Stuttgartn@@ery. The system provides accurate
classification results (Figure 7). In this precisfarming scenario, it is important to keep the
number of false negatives, i.e., the number of shgat plants that are classified as weeds,
small. This type of misclassification should beided as this would lead to the elimination
of the value crop by the robot. In contrast, ndediéng a weed is less critical than destroying
the crop. The evaluation of this approach suggbatshe majority of weed plants get
correctly classified while the number of false piess remains small.

Figure 7: Example results of value crop/weed clad&ation system based
on UGV data. In green value crop (sugar beet) and &eds in red.
From Lottes et al. (2016)



5. Conclusion and outlook

An aerial information retrieval pipeline has be@veloped including spatial information and
crop height estimation. The maps of crop coveragegment information can be used for
variable rate application of fertilizers. Crop Haighformation may be interpreted
independently and may deliver information abouporiality. The developed weed
perception system includes vegetation detectiorfeatire extraction; the classification
performance obtained so far is good. All system&ia be tested and adjusted to different,
likely more complicated, field situations, contaigidifferent weed species and earlier and
later growth stages of sugar beet.
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