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Abstract— Robots for precision farming have the potential
to reduce the reliance on herbicides and pesticides through
selectively spraying individual plants or through manual weed
removal. To achieve this, the value crops and the weeds must
be identified by the robot’s perception system to trigger the
actuators for spraying or removal. In this paper, we address
the problem of detecting the sugar beet plants as well as weeds
using a camera installed on a mobile robot operating on a field.
We propose a system that performs vegetation detection, feature
extraction, random forest classification, and smoothing through
a Markov random field to obtain an accurate estimate of the
crops and weeds. We implemented and thoroughly evaluated
our system on a real farm robot on different sugar beet
fields and illustrate that our approach allows for accurately
identifying the weed on the field.

I. INTRODUCTION

One target of sustainable farming is to increase yield while
reducing reliance on herbicides and pesticides. Precision
farming techniques seek to address this challenge by moni-
toring key indicators of crop health and targeting treatment
only to plants that need it. Doing this manually, is a time
consuming and expensive activity. There has, however, been
a great progress on autonomous farming robots that target to
automate the work on the field.

In order to build autonomous robots for farming ap-
plications, several challenges need to be addressed. These
challenges include robust perception, fast and effective ac-
tuators, rough terrain navigation, long-term autonomy, and
several others. In this paper, we investigate the first of those
challenges, namely a part of the perception problem. Our aim
is to develop an effective, vision-based perception system
that can identify the value crop and distinguish it from
weeds growing on the field. By automatically separating both
classes of plants, we enable the robot to manually remove the
weed or to perform spraying actions on a per-plan basis. An
illustration of our field robot and an example classification
results is depicted in Figure 1.

The contribution of this paper is a vision-based classifica-
tion system for mobile robots to separate value crops from
weeds. The crop under consideration here are sugar beets, an
important crop in Germany and other countries in Northern
Europe. Our proposed system executes several steps. It first
separates the vegetation from the remaining parts of the
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Fig. 1: Left: Bonirob V3 robot operating on a sugar beet field. Right:
Downward looking camera capturing images of object space illu-
minated by halogen spots and example image with sugar beet/weed
classification illustrated through green (crop) and red (weed) labels.

image, i.e., mostly soil. Then, we compute a series of features
in the image regions that correspond to vegetation and exploit
a random forest for performing the classification based on our
features computed over several image regions and channels.
In a last step, we take the neighborhood information between
classified regions into account though Markov random fields
and in this way improve the individually computed classifi-
cations of the random forest. Our approach can also exploit
spatial priors, for example, if value crops were roughly
planted at a known distance. We implemented the proposed
system as ROS modules and evaluated them on different real
field robots. For our experiment, we used different versions
of BOSCH’s Bonirob system and the sensor for classification
is a single 4-channel JAI camera.

We evaluated our approach on sugar beet plants at dif-
ferent growth stages and weed plants that grew on test
fields near Stuttgart, Germany. As the evaluations suggest,
our system provides accurate classification results. In our
precision farming scenario, it is important to keep the number
of false negatives, i.e., the number of sugar beet plants that
are classified as weeds, small. This type of misclassification
should be avoided as this would lead to the elimination of
the value crop by the robot. In contrast, not detecting a weed
is less critical. The evaluation of our approach suggest that
the majority of weed plants get correctly classified while the
number of false positives stays small.

II. RELATED WORK

Extracting semantic information about the environment is
relevant topic in robotics [14], [17], [11]. In the context



of agricultural applications, several vision-based crop and
weed detection approaches for specific plants have been
proposed. Whereas traditional methods on plant phenotyping
typically bring the plant into a specialized, static sensor array,
several innovative solutions have been developed for on-
field operation. This includes our previous work by Miiter
et al. [11], which focused on the manual removal of weeds
through the design and control of a mechanism for intra-row
weeding. Related to that Nieuwenhuizen [12] presents an
approach on the automated detection and control of volunteer
potato plants.

Borregaard et al. [2] perform crop versus weed classifi-
cation using narrowband reflectance at 694 nm and 970 nm.
Feyaerts and van Gool [7] conducted a multi-spectral ma-
chine vision study with the aim to design an online weed
detection system for selective spraying. They collected multi-
spectral images using six channels with different wave length
(441, 446, 459, 883, 924 and 988 nm) in the field. They report
crop versus weed classification rates of 80% for sugar beet
plants and 91% for weeds. Related to our method, Haug et
al. [8] present a method to classify carrot plants and weeds in
RGB- and NIR-images without needing a pre-segmentation
of the scenes into agglutinative objects. They achieve an
average accuracy of 94% for carrot plants on an evaluation
set of 70 images where both, intra- and inter-row overlap is
present.

Other researchers have investigated the use of texture
computed from grayscale and color images to identify plant
species. Shearer and Holmes [16] used color co-occurrence
matrices in the hue, saturation and intensity color space.
Related to that, Burks et al. [4] evaluated color texture clas-
sification of different weed species using a neural network
classifier. Both works report that using statistical parameters
extracted from co-occurrence matrices provide high discrim-
inative power to identify or separate plants but accentuate
that more research is needed for testing under uncontrolled
field conditions.

Several work has been conducted in the context of leaf
image classification and segmentation [19], [10], [5]. In the
work by Wang et al. [19], leaf images are segmented using
morphological operators and shape features are extracted and
used in a moving center hypersphere classifier to infer plant
species. Kumar et al. [10] start from segmented images of
leaves using a binary classifier on global image signatures
as a validity test and curvature features compared with a
given database to extract the best match. To cover a variety
of leaf shapes, also deformable leaf models and morphology
descriptors have been exploited by Cerutti et al. [5].

Tellaeche et al. [18] present a vision-based approach
for selective weed spraying. They capture images inclined
downwards with respect to the horizontal plane of field
scenes and subdivide them in to grid cells. For each cell a
decision is made based on structural and area features using
Bayesian decision theory. A further cell-based approach by
Aitkenhead et. al [1] fragments images in a top-down fashion
containing seedlings of crop and weeds into 16 cells and
classify each of them using a self organized neural network.

Fig. 2: Top: RGB and NIR image. Bottom: NDVI and masked
NDVI image according to the vegetation detection.

They attain a classification performance close to 80%, but as
in case of [18] at the comparably low resolution of the cells.
In contrast, we provide labels for the full image resolution
to allow a high precision treatment in object space.

Hemming and Rath [9] propose a vision based system
which distinguishes carrots, cabbage and weeds using a fuzzy
logic classifier. For leaf classification, they perform a pre-
segmentation into individual plants to extract shape and color
features per segment. They evaluate their approach in open
field experiments and achieve classification accuracies of
72% up to 88%, but report that pre-segmentation of plants
entails problems and embodies a limiting factor.

The contribution of this work is a visual 4-channel de-
tection system for mobile robots operating on the field that
allows for separating weeds from a value crop, here done
for sugar beets. The proposed system performs vegetation
detection, feature extraction, random forest classification, and
smoothing through a Markov Random Field to obtain an
accurate estimate of the crops and weed.

III. VISION-BASED PLANT CLASSIFICATION

The primary objective of our proposed plant classification
system is to enable mobile field robots to distinguish crops
and weeds in agricultural field environments. Here, we con-
sider sugar beets, a popular value crop in Northern Europe,
especially in Germany. The classification is performed on a
mobile robot, see Figure 1, which perceives the field using a
4-channel camera that offers in addition to RGB information
also one near-infra-red (NIR) intensity measurement per
pixel, i.e., RBG+NIR. See Figure 2 for example images.
The NIR information is especially useful for separating the
vegetation from the soil and other background due to the
high reflectivity of chlorophyll and thus (healthy) plants in
the NIR spectrum.

The main goal of the proposed system is identifying crop
and weeds on a per-pixel basis in the RGB+NIR camera
images. Our overall pipeline works in four steps: First, we
identify the vegetation using the NIR information, which
leads to a vegetation mask Z,,, see Figure 2 (bottom right)
for an example. This step is highly effective as it allows



us to compute the features on the subsequent processing
steps only for the regions that correspond to vegetation.
Second, we compute a set of features for the image regions
that correspond to vegetation. Third, we perform random
forest classification of the vegetation based on the features
extracted in the previous step. This yields a binary probability
distribution representing the fact that the pixel corresponds
to our crop or to weed. Fourth, we exploit the information
from the random forest in a Markov Random Field to obtain
smoothed results by utilizing the neighborhood information.
In the subsequent Subsections III-A-III-E, we provide a
detailed description of the four steps.

A. Vegetation Detection

The goal of vegetation detection is to eliminate the irrel-
evant background from the image Z so that the subsequent
classification task operates on regions that correspond to veg-
etation. Due to the hight reflectivity of chlorophyll in the NIR
spectrum [15], it is comparably easy to separate vegetation
from soil or other objects. We compute a vegetation mask

7o(i.0) - {

with the pixel location (4, 7).

To separate the vegetation, we exploit specific reflectance
of healthy vegetation using the normalized difference vege-
tation index (NDVI) according to Rouse et al. [15] using the
NIR channel Z,; and the red channel Z, on a per-pixel

basis:

Znir(i,5) + Ty(i, j)
INIR(imj) - IR(iﬂj)
Figure 2 (bottom left) shows an example of a NDVI image
Iypyr for sugar beet plants and weeds. On the field,
the reflectivity of chlorophyll typically leads to a bimodal
intensity distribution in Zypy,; for healthy vegetation and
allows us to perform a threshold-based classification on the
Zypyr information for every pixel.

In most cases, a threshold-based classification based on
the Zpy; Will lead to small residual errors. They are typi-
cally caused by lens errors, especially chromatic aberration,
resulting in slightly different mappings of the red and the
near-infra-red light from the work space to pixels on the
chip. Most of the residual errors ca be eliminated through
basic image processing techniques such as (i) requiring
a minimum brightness in Zy;p, (ii) using morphological
opening and closing to fill gaps and to remove noise at
contours, and (iii) removing regions corresponding a few
pixels only. Figure 2 (bottom right) depicts the application
of the vegetation mask Z,, on the Zp,; image.

1, if Z(i,j) € vegetation
0, otherwise
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2

Inpyr(i,j) =

B. Feature Extraction

As plants are expected to have a minimal size, we do
not perform a classification for each pixel but use a grid
tessellation of the image after applying the vegetation-mask.
We compute features around keypoints K and in our current
implementation, the keypoints are spaced 10 pixel by 10 pixel
apart, which corresponds to a size of 3 mm by 3 mm in object

Fig. 3: Keypoints (white) for classification at a 3 mm distance on
the object and an example neighborhood (blue) representing the
region that is considered for the feature computation.

space. This leads to substantial computational savings when
computing the features and we found no loss in performance
in our experiments. The features computed at each keypoint
take the local neighborhood into account. In our current
implementation, the neighborhood P(K) of a keypoint K
has a size of 80pixel by 80pixel. Figure 3 illustrates the
arrangement of the keypoints on an image and including the
neighborhoods. The features we compute can be categorized
into two main groups:

« Statistical features: Our set Fgs;(z, P(K)) of statistical
features includes min, max, range, mean, standard de-
viation, median, skewness, kurtosis, and entropy. These
statistical features are computed in the local neighbor-
hood P(K) of a K on different inputs z. The input x
is not only computed in the raw image itself but the
channel G, B separately, the NDVI image as well as on
the magnitude of the first and second gradient of the
NDVI image, i.e.,

0L 0T

VINpvi = ‘333 + B 3)
0°T 0%

AINDVI - E + 873/ (4)

The magnitudes of the directed gradients provide in-
formation about structures or homogeneous regions
as well as a source for specific statistics of a local
neighborhood.

In addition to that, we compute the statistical fea-
tures also on the texture. To achieve this, we em-
ploy local binary patterns (LBP) according to Ojala
and Pietikddinen [13] as features to encode texture
information. The LBP operator performs thresholding
operations within a 8-connected neighborhood based on
the value of its center pixel and converts this pattern as
binary number. Figure 4 gives an example for the com-
putation of a LBP number and the associating contrast
measure for a pixel. We compute the joint probability
distribution p(LBP, C) for each P(K) based on Z
and AZypy; considering each vegetation pixel and
respectively extract the statistical features from it.

« Shape features: Fgp,(P(K)) describe different aspects
of the shape of the vegetation in the local neighbor-
hood P(K) of a keypoint K. Thus, the shape features
only need to be computed on the vegetation mask Z,,,
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Fig. 4: Example for the computation of a LBP number and the
corresponding contrast measure C for a pixel given its 8-connected
neighborhood. (1) input, (2) threshold operation by value of center
pixel, and (3) binomial weights according to [13].

which is a binary image. We consider several features
such as contours, relations to geometric primitives and
geometrical ratios of windowed pieces of vegetation.
We exploit all features as defined by Haug et al. [8].
Additionally, we also use

— radius of minimum enclosing circle of the contour

— aspect ratio of the major and minor axes of the
enclosing ellipse of the contour

— area change under smoothing, which describes how
the area of vegetation changes due to a smoothing
with different kernel sizes and is given by the ratio
of the areas.

— form factor F', which provides a measure of the
shape of an object

F 4 area
perimeter?

&)

Table I gives a summary of all features used in our
classification system and described on which inputs they are
computed.

C. Relative Plant Arrangement Prior

Due to the fact that crop is often sowed in an automated
fashion, prior information about the arrangement of the
plants on the field can further improve the classification
performance. We incorporate a plant arrangement as an ad-
ditional feature. We use the probability for a certain keypoint
KC; corresponding to a crop based on it relative location to
previously classified crops.

To represent the relative arrangement of crops, we use a
coordinate system that is defined according to the crop row,
which defines the x-direction. Given this coordinate system,
we compute the absolute difference D; of the keypoint ¢ in
x and y direction between the keypoint and all positively
classified J crops:

D; = (|dul,...,|dis|) " with |dij| = (|Azy;], |Ay])
6)

Based on these distance, we compute

Far — pla| D) — PPl p() -

- 2. p(Dlw) p(w)

Nr. Feature Set

J Statistical Features Fgi(x)

Fi min

Fo max

F3 range

Fy mean

Fs standard deviation

Fs median

Fr skewness

Fs kurtosis

Fo entropy
All statistical features Fg;(x) are computed for x in
ZereenIerue Inove Aypvrs

LBP(Zypy,), LBP(NDVT)

1 Shape features Fsj, computed on binary image Z,,
Fio Perimeter of contour

Fi1 Area of contour

Fi12  Convexity

Fi13  Compactness

Fi1;  Solidity

Fi15  Rectangularity

Fi16  Aspect ratio two axes of the enclosing ellipse
Fi17  Area change under smoothing

Fi1s  Form factor

Fi19  Radius of min. enclosing circle (MEC)

Foo MEC / major axis of the enclosing ellipse
Foi Length of skeleton (medial axis)

Fo2  Skeleton to perimeter ratio

1 Other features
Fo3  plant arrangement prior, see Eq. (7)
Fay ‘Fg(VZNDVI)/]:g(AINDVI)

TABLE I: Features uses by our classification system

where w refers to a class label, with w,. corresponding to
crops and w,, to weeds. The class conditional probability
distribution p(D|w,.) and the relative frequency of the classes
are learned from training data or can be provided if the
information is known from sowing. For p(D|w,,), we con-
sider a uniform distribution, due to the fact that in reality
weed can grow anywhere. Note that this feature is only
available if at least n neighboring images have already been
classified. In our current implementation, we select n=5. Our
tests have shown that this choice favors a good trade off
between uncertainty of the relative pose estimation, caused
by odometry errors, and the probability to find crop in this
image sequence which in necessary to compute D);.

D. Random Forest Classification

For the classification, we apply a random forest [3] be-
cause it provides comparably robust classification results.
As an ensemble method, random forests avoid overfitting
to some degree and implicitly estimate confidences for the
classes labels. Random forests can be used for classification
and regression. The key idea is to construct as large number
of decision trees (“‘a forest”) at training time by randomizing
the use of features and elements from the training data.
During the operational phase, they output a class label or
a distribution over the class label based on the output of
the individual decision trees. Random forests run efficiently
on large datasets and trained classifiers are fast to evaluate



Fig. 5: Left to right: Random forest classification, MRF smoothing
at keypoints, interpolation at every pixel. The MRF smoothing
eliminates the few wrongly classified keypoints at the center.

and are also easy to parallelize if performance matters. An
interesting property of the random forest allows for dealing
with missing data, for example, if feature is not available.
This is relevant for our application in case the relative plant
arrangement prior is not known.

As a result of the random forest classification, we obtain
for every keypoint a probability if it corresponds to a
sugar beet plant or to weed. Note that since random forests
are capable of solving multi-class problems, they have the
potential to also separate different weed classes, which can be
used to select specific weed removal or spraying treatments.
Such investigation, however, is future work and have not
been addressed here.

E. Smoothing Thorough Markov Random Fields

The classification system described so far, computes each
label assignment independently of the other nearby labels.
In order to improve the classification results and to exploit
the topological relationships between keypoints, we apply a
Markov random field (MRF). We compute a global classifi-
cation based on the individually computed class labels wi
of the keypoints by considering their spatial distribution and
class confidences p(wi|F). We achieve this by minimizing
the energy function

Blwe) =Y | DoplwelF)+ Y. Viwk,wk)
K K’eN4(K)

(8)
through belief propagation. Here, F(wx ) describes the qual-
ity of a labeling under the key assumption that neighboring
labels vary slightly, but also can change fiercely at class
borders. Therefore, two energy terms are needed. The first
one D considers the confidence of a class label and through
this defines the energy which is needed to change the label.
The term V describes the energy for smoothing the four-
connected neighborhood, i.e., how many neighboring labels
agree. We minimize Eq. (8) using efficient belief propaga-
tion according to [6]. This optimizes the classification, see
Figure 5 for an example.

IV. EXPERIMENTS

The evaluation is designed to illustrate the performance
of our plant classification system and to support the three
main claims made in this paper. These three claims are:
(i) our approach is suitable for classifying sugar beets and

Fig. 6: Example results of our system. Left: classification results.
Right: ground truth. The bottom left image depicts an example for
a classification errors (blue arrows).

Parameter | Dataset A  Dataset B Dataset C
no. images 1024 694 974
no of crops 1315 831 1145
p(we) / p(ww) | 0.7470.26  0.66/0.34 0.68 / 0.32
growth stage 4-leaf late 4-leaf  2-leaf/early 4-leaf

TABLE II: Information about the datasets. A and B are collected
on the same field with a temporal difference of one week. C is
collected on another field.

weeds under real world conditions, (ii) we illustrate that our
approach also provides good classification results on real
fields if the grow stage of the vegetation has changed, and
(iii) we show that using pose information from sowing can
have a significant impact to the classification results.

A. Experimental Setup

All experiments have been conducted with different gen-
erations of the Bonirob field robot, shown in figure 1. For the
image acquisition, we used a 4-channel JAI AD-130 GE cam-
era pointing downwards on the field approximately 70 cm
above soil. The RGB+NIR images were captured with a
resolution of 1296x966 pixels using a Fujinon TF15-DA-
8 lens, which yields a ground resolution of roughly 3 2%
and a field of view of 24 cm in driving direction and 31 cm
orthogonal to it. The images were captured with a frequency
of 1Hz while the robot was moving over the field with
approximately 150 “22. For aligning the images, we used
the odometry information from the wheel encoders.

We used the robot on sugar beet fields near Stuttgart, Ger-
many. In the evaluation reported below, we mainly use three
datasets, here called A, B and C, see Table II. The datasets A
and B have been collected on the same field with a temporal
difference of one week. Dataset C has been collected on a
different field. To allow for a ground truth evaluation, we
manually labeled all sugar beet plants and weeds in the
images. We compute all evaluation parameters by a keypoint-
wise comparison between prediction and ground truth with
a ground resolution of 3 mm. We refer to sugar beet plants
(w.) as positives and weeds (w,,) as negatives.



ROC - cross validation on B

dicted with classifier learnt on A

ROC - C predicted with classifier learnt on A

o
©
o
©

o o
I ®
o o
3 ®

o
>
e
>

o
o

o
o

o
©

o
®

o
3

o
>

o
o

true positive rate
true positive rate

o
N
o
N

——— weed RF
weed RF without prior

°
s
o

sugar MRF sugar MRF sugar MRF

0.4 — — — sugar RF 04 — — — sugar RF 04 — — — sugar RF

03 F [ e sugar without prior 03 H | e sugar without prior 03 [yfl & [ sugar without prior
weed MRF weed MRF weed MRF

true positive rate

o
N

——— weed RF
weed RF without prior

weed RF
weed RF without prior

°
e

o

0

01 02 03 04 05 06

false positve rate

07 08 0 01 02 03 04

Precision-Recall - cross validation on B Prﬁclsiun—Recall - B predicted

false positive rate

o

05 06 07 08 09 03 04 05 06

false positive rate

07 08 09

1

with classifier learnt on A Prtlacislon—RecaH - C predicted with classifier learnt on A

o
©

o
®

°
3

=
>

IS < IS
S S S
205 205 205
o sugar MRF o sugar MRF L sugar MRF
Q04 Q04 Q@ 04
— — —sugar RF — — —sugar RF — — —sugar RF
03 f | sugar without prior [ e R sugar without prior 0.3 | weeseeeee sugar without prior |
|
02 weed MRF 02 weed MRF 02 weed MRF !
—— —weed RF — — —weed RF — — -weed RF |
[ e weed RF without prior [ I weed RF without prior L weed RF without prior /

o

05 06 07 03 04
Recall

Fig. 7: ROC curves (top) and precision recall plots (bottom). Left:
Middle: Evaluation using a classifier trained on A and tested on B.
a different sugar beet field with a substantially different growth sta
classification and “MRF” to the combination of random forest and
plant arrangement prior, “sugar” to sugar beet plants and “weed” to

FNR
TNR

0.01%
55%

0.5%
72%

1%
80%

2.5%
86%

5%
91%

TABLE III: Limiting the false negative rate, i.e. the percentage of
sugar beets classified as weeds to the values shown in the first
row of the table, yields to the given true negative rates (TNR), i.e.
percentage of correctly classified weeds that will be eliminated.

FPR
TPR

2.5%
72 %

5%
85%

10%
96%

15%
98%

30%
99.5%

TABLE IV: Limiting the a false positive rate (FPR) as specified in
the first row, yields the true positive rates (TRP).

We illustrate the performance of the classification results
by ROC curves and Precision-Recall plots. For such plots, we
varied the threshold for class labeling concerning to the esti-
mated confidences to compute the classification performance
of the random forest. During all experiments, we only use
independent image scenes, e.g., no overlapping images, to
avoid redundant data in the evaluation.

B. Evaluation

The first set of experiments is designed to illustrate the
performance of our sugar beet classification system. We
apply a K-fold cross validation to B and a stratification of
each training set according to the learned class priors p(w).
We chose K = 15 and exploit class priors from ground truth
data.

We present here the results from dataset B because it is
the most difficult dataset due to a substantial plant/weed
overlaps. The resulting ROC- and precision-recall plots are
depicted in the first column of Figure 7. We achieve a true

05 06
Recall

05 06 03 04
Recall

Performance evaluated using 15-fold cross validation on dataset B.
Right: classifier trained on A and tested on C, i.e., a dataset from
ge of the plants. The term label “RF” refers to random forest-only
MREF. “without prior” refers to the approach neglecting the relative
weeds.

positive rate (TPR/recall) of 96% with a precision of 95%
for sugar beets and a false positive rates (FPR) of 10%. In
terms of weeds our system shows a TNR of 90% and a FNR
of 3%. Thus, the system classifies the majority of plants
correctly. Two classification examples vs. ground truth are
shown in Figure 6.

Precision farming robots are also envisioned to manually
eliminate weeds. Thus, a wrong classification of a sugar
beet plant will lead to its elimination, while a false positive
means that a weed will not be treated. In order to avoid
eliminating value crops, the plant classification system has
to avoid false negatives with a higher priority than false
positives. Therefore, we provide in Table III the expected
true negative rate for a given false negative rate. The inverse,
which may be relevant for other application in the context
of phenotyping, is shown in Table IV.

We furthermore evaluated the performance of our ap-
proach when the training is performed on a field with a
different growth stage than in the test dataset. To do so, we
classified dataset B using the random forest as well as the
MREF and used only dataset A for learning. In both datasets
relevant for weed removal the sugar beets are in 4-leaf-
stage, but the plant size differs significantly, especially for
the weeds. The resulting ROC- and precision-recall curve are
shown in the second column of Figure 7.

Here, our system provides a comparable precision as
before with a TPR of 90% and precision of 95% for sugar
which means that the number of crops, which are classified
as weed is still small. The main difference in performance
measure is given by TNR of 90% with a precision of 82%
for weeds, probably caused by its notable altered visual and



Rank  Feature
1 Fa23 plant arrangement prior
2 F3(LBP(AZypyy))
3 Fy(LBP(AZypyy))
4 Foy = Fo(VIypy)/Fo(Alypyr)
5 Fs(LBP(AZypyp))
6  Fs(Tgrpen)
7 Fo(LBP(Zypyy))
8  F9(LBP(AZypyy))
9 Fe(TpLup)
10 F;7 area change under smoothing

TABLE V: The 10 most expressive features over all datasets. See
Table I for a description of the features.

physical appearance.

For the next experiment, we increase the difficulty for
classification and feed our trained system with images of
an unknown fields that contains sugar beet of an earlier
growth stage in a 2-leaf and partially early 4-leaf stage
(dataset C). In most real world applications, one would
avoid such situations by providing a classifier trained for
the appropriate growth state but it is worth investigating the
loss in performance. The results are depicted in the third
column of Figure 7. Obviously, the performance decreases
but the achieved TPR of 85% and TNR of 79% indicate
that our proposed system also delivers usable results. The
performance is sufficient for selective spraying applications
but probably not for mechanical weed removal, as too many
crops would be removed by the robot.

In all experiments, we also evaluated the effect of using
the relative plant arrangement prior from sowing or learned
from training data. The dotted lines in all plots show the
identical classification system but ignoring the relative plant
arrangement information. In all cases, the prior helps to
obtain better classification results. On average, we obtain a
gain in classification accuracy of 3% over both classes for the
first and second experiment. In case of the classification in
an unknown environment the impact of the prior information
becomes even larger, i.e. 9% improvement in classification
accuracy for dataset C. In sum, the results illustrate that using
spatial prior information about the crop arrangement is a
valuable information for classification systems.

Finally, we looked at the relevance of the individual feature
for our classification task over all datasets. The ten most
important features are listed in Table V. As can be seen,
the NDVI information and its Laplacian, texture information
and the pose arrangement prior are key supporters for the
classification task.

V. CONCLUSION

Robots for precision farming must be able to distinguish
the crops on the field from weeds. We addressed the problem
of detecting sugar beet plants and weeds using a camera
installed on a mobile robot operating on a real field. We
developed a system that performs vegetation detection and
feature extraction, classification, and smoothing. Our system

uses statistical and shape features computed on the different
channels of the image and has the ability to exploit a spatial
arrangement prior from sowing. To decide which area of
an image corresponds to sugar beets and weeds, we com-
bine random forest classification and in addition exploit the
neighboring information through a Markov random field. We
implemented our approach as ROS modules and thoroughly
evaluated it on a real farm robot on three different sugar beet
fields and illustrate that our approach allows for accurately
identifying the weed on the field.

Despite these encouraging results, there is further space for
improvements. We currently extend of our work to decrease
its runtime, which currently takes around 4 s per image due
to the large number of features that are computed.
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