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Abstract— Place recognition, i.e., the ability to recognize pre-
viously seen parts of the environment, is one of the fundamental
tasks in mobile robotics. The wide range of applications of
place recognition includes localization (determine the initial
pose), SLAM (detect loop closures), and change detection in
dynamic environments. In the past, only relatively little work
has been carried out to attack this problem using 3D range data
and the majority of approaches focuses on detecting similar
structures without estimating relative poses. In this paper, we
present an algorithm based on 3D range data that is able to
reliably detect previously seen parts of the environment and at
the same time calculates an accurate transformation between
the corresponding scan-pairs. Our system uses the estimated
transformation to evaluate a candidate and in this way to
more robustly reject false positives for place recognition. We
present an extensive set of experiments using publicly available
datasets in which we compare our system to other state-of-the- the found loop closures between the scans (blue/gray lifiés) z-axis of
art approaches. . . . the trajectory represents the scan index to make the looprelssmore

Index Terms— Place recognition, SLAM, loop closing, point  easily visible. The image in the bottom right shows an aer@ge from
clouds, range images, range sensing Google Earth with the overlaid trajectory of the datasete Eperimental

section provides further details about the dataset and esuits.

Fig. 1. Results from our place recognition system on the Mar®
dataset. The image shows the graph of the trajectory (blades)oand

I. INTRODUCTION

Place recognition, meaning the detection that a robot We tested our approach on different kinds of platforms:
revisited an already known area, is a crucial part in keground robots and flying vehicles. For the ground robots,
navigation tasks including localization and SLAM. The maWwe used publicly available datasets to allow comparisoh wit
jority of state-of-the-art place recognition techniquessd Previous methods. For flying vehicles we acquired a new set
been developed for vision- or two dimensional range dat&f 3D range scans. For the sake of repeatability, we will
Relatively few approaches work on three-dimensional lasé&fake this data publicly available.
range scans and can efficiently calculate the similarityher t
relative transformation between two scans.

In this paper we present a place recognition system oper-in the past, the problem of place recognition has been
ating on 3D range data. Our approach transforms a given 3ldressed by several researchers and approaches foerliffer
range scan into a range image and uses a combination ofypes of sensors have been developed. Cameras are often
bag-of-words approach and a point-feature-based estimatithe first choice. Compared to 3D data, vision features are
of relative poses that are then individually scored. Figlire typically very descriptive and unique. However, spaciat ve
shows an example application. It visualizes how the calcification is naturally easier in 3D data. One very successful
lated relative transformations between scans can be useda@roach using vision is the Feature Appearance Based
edges (loop closures) in a pose graph. This enables us NmPping algorithm (FABMAP) proposed by Cummins and
apply our approach as a front-end for a graph-based SLAMewman [7]. This algorithm uses a Bag-of-Words (BoW) ap-
system. proach based on SURFs [5] extracted from omni-directional

This paper builds on the results of our earlier work ircamera images and was shown to work reliably even on
the area of place recognition [16]. This approach had higéxtremely large-scale datasets. We would like to refer the
recognition rates, but had shortcomings regarding thement reader to this paper for a detailed discussion on both vision
and was not fully invariant to the orientation of the indived  based place recognition and Bow approaches.
scans. Our algorithm described in this paper uses a novelAn approach that is similar to ours regarding the utiliza-
feature type, an improved sensor model, includes a selion of point features to create candidate transformatisns
similarity analysis, and employs a bag-of-words approactlescribed in the PhD thesis of Huber [11]. His approach
as a preprocessing step to achieve a higher performance.extracts Spin Images [12] from 3D scans and uses them to

o ) match each scan against a database. Huber reported 1.5s as
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Department of Computer Science, D-79110 Freiburg, GermanyN€ time requirement to match one scan against another. Even
{steder,ruhnke,grzonka,burgad@informatik.uni-freiburg.de considering the advances in computer hardware since 2002,

II. RELATED WORK



A. Overview

Given a database of 3D scans and a scan as input query,
our algorithm returns a set of scans which are potential
matches with the input. Additionally, it calculates for sye
Fig. 2. Example range image from the FreiburgCampus@B(dataset. returned scan a transformation and a score reflecting how

The image pixel positions represent the spherical cooretinat the points.  ~artain the system is that the scans actually match
The gray values represent the measured ranges. Blue pointaadimum ;

range readings and green po|nts are unknown Space. MOTe fOfma||y, |etD denote the database Of 3D range
measurements and* a query scan. The goal of our ap-
our approach is substantially faster. proach is to calculate a set of candidate palt$;*) =

Li and Olson [14] create visual images from LIDAR data,({(z1,T1, s1), - -, (zn, Tn,sn)). Here,z; € D;i € {1,...,n}
which enables them to use feature extraction methods froame the potential measurement candidates from the database
the vision sector to create a more universally usable poimthich are similar to the current quety. Wheread; denotes
feature extractor. This feature extraction method is wsabthe estimated transformation fromi to z;, s; is a score
in 2D and 3D, although a 2D projection of the points isreflecting the confidence about the match. Our algorithm for
performed in the 3D case. Therefore relative poses computediculatingC'(z*) mainly consists of the following four steps.
from feature correspondences will also just be 2D. 1) Given a database of 3D range measuremntgrain-
Several approaches have been designed especially for 2D * jg set), calculate a set of features from the 3D scans
range data. For, example, Bosse and Zlot [6] presented aloop  ang puild a dictionary for a bag-of-words (BoW)
closure solution that builds local maps from consecutive 2D gpproach.

scans for which they compute histogram-based features. They) yse the Bow approach to get an initial similarity
correlation between these features is than used to match the ' measure for all scans in the databd3ewith respect

local maps a_g_ainst each other. Tipati al. _[18] perform to the query scan*. Using this measure, order the
place recognition on 2D range scans using the so-called  gatabase scans according to their similarity. Let the
FLIRT-features (Fast Laser Interest Region Transformg Th resulting ordered set bB(z*) = (41, ..., 2p))-

features are used to find correspondences between points i%) For each pair(z*,%.),2x € D(z*), starting with
the scans and transformations are extracted using RANSAC. * ;. _ 1, calculate7 a éet of possible transformations
Granstdbm et al. [8] proposed a machine learning approach betweenz* and %, by matching point features of the
to detect loops in 2D range scans. They extract a combination corresponding scans. Note that this set of features is
of rotation-invariant features from the scans and use apina not the same as the one used for the Bow approach,
classifier based on boosting to recognize previously wdsite since the parameters for the feature extraction differ.

locations. _ i 4) Score each of the possible transformations and get
Recently, Granstim et al. [9] extended their system to 3D the transformation7, with the highest scoresy.

range scans. Their system only detects the existence opa loo If this score is above an acceptance threshold then
closure and does not determine the relative transformation (2, Th, 1) is a candidate for a recognized place, i.e
between scans. Magnussetal.[15] also proposed a system it is added t0C(=*) T

for place recognition based on 3D data. They utilize th . .
%he last two steps are repeated until a timeout occurs or

Normal Distribution Transform as features to match scan . . : ;
S |D|. Note that if there are no time constraints, the first

These features are global appearance descriptors, wh

describe the whole 3D scan instead of just small areas fuo Isrt]eps r(l:an be SEpp,ehd 33 thag all scfanﬁ)lare checked.
it is the case for our features. While being very fast, their Although we work with a database of 3D range scans, we

system does also not estimate relative poses. In Section IV, not use this data directly. _We rather represent eachfthree
we will compare our algorithm to these two methods. Th imensional range scan by its dual, namely a range image

results indicate that our approach yields substantialijéi see Flgure 2). If the 3D scan is captureq from one p(_)lnt n
recall rates. space, i.e., the sensor does not move while the 3D points are

generated, the range image contains the same information as
[1l. TECHNICAL SECTION the scan. The advantage of the range image is that it allows us
In our former work on place recognition [16] we usedto model unknown areas as well as maximum range readings
point feature correspondences to find candidate transfanore efficiently.
mations between scans and calculated scores for thoséMVe will now describe the individual components of our
transformations. The main problem was that the runtimeapproach in more detail.
requirements for this approach were relatively high and tha )
it was not completely rotationally invariant. The algorith B- Feature Extraction
presented here is similar regarding the basic functidealit ~ Our approach applies the so-called NARFs (Normal-
However, we introduced several improvements to make thdligned Radial Features) [17] recently developed for rabus
algorithm more efficient and also more robust. In the remairebject recognition based on 3D scans. These point features
der of this section we will describe the different composentare used to build a dictionary for the bag of words approach
of our new algorithm in detail. and also to find corresponding regions between two 3D



measurements. Compared to the approach presented intamnms of the words of the dictionary by selecting the closest
earlier work [16], NARFs provide more robust key pointsword for every feature descriptor (regarding the Euclidean
and the feature descriptor is less prone to noise in the datiistance). For each;, we obtain a histogranfi; having
There are three parameters needed for the extraction 2if0 bins. The number in each bin reflects how often the
NARFs. First, the size of the feature descriptor, second ttmrresponding word is present #. Given the histogram of
maximum number of calculated features, and finally théhe query scar{* (obtained in the same way), we calculate
support size, which is the size of the area around the featutél* — H;||» as the distance between the histograms. This
point that is used to calculate the descriptor. We chifse distance is then used as an initial similarity measure tatere
as the descriptor size. For the Bow approach a high numbtre ordered seD(z*), as described in Section IlI-A
of features describing small parts of the environment istmos In the next step we calculate a set of candidate transfor-
useful. Therefore we extrad000 features with a support mations between the scan pairs.
size of 1/10 of the average range in databaBe However,

. : D. Determining Candidate Transformations
when matching a new query againstD, a smaller number ,
of more distinctive features is needed. Here, we ext2a6t Each NARF encodes a full 3D transformation. Therefore,

features with a support size df/5 of the average range the knowledge about a single feature correspondence be-

in D. Intuitively, a small support size makes the feature&V€en two scans enables us to retrieve all six degrees of
susceptible to noise and less distinctive, whereas a Iarg@edom of the relative transformation between them (i.e.,
support size makes them more expensive to compute aRY c.alculatlng the difference bereen the two poses)_. To
less robust to partial occlusion and missing data. Howeve?Ptain the candidate transformations for each scan pair, we

we found the values above to provide reasonable trade-offéder the feature pairs according to increasing descriptor
between those properties. _dlsta_nce (see Section I1I-B) and evaluate the transfoonati

The descriptors of the features can be compared usi this order. In other words, we calculate a score for each
standard norms like the Manhattan distance. The resultir’% these transformations (see Section III-E). In our experi
measure (thedescriptor distance describes the similarity MENtS We stop after a maximum number2600 evaluated
between the described regions. Here, a high value reflectd’gnsformations when using the rotationally variant \@nsi
low similarity. Furthermore, NARFs can either be used in & the NARFs. In the rotationally invariant case however, we
rotationally invariant version or without invariance regiag ~ €valuate up (@000 transformations due to the bigger search
the rotation around the normal. For example, in the rotatiorsPac€ introduced by the additional degree of freedom.

ally variant case the features distinguish between a tdg rige. Scoring of Candidate Transformations
corner and a top left corner of a square, whereas they do NOtrpe reqyt of the feature matching is a list of relative poses
in the rotationally invariant case. This is a useful didfime, 7

. . Tw = {Tx,,..., T}, } for the candidate paitz*, %), 2, €
smce'wheeled r°t_’°t5 qapturlng 3[_) scans often move W'tb(z*). Our goal now is to evaluate those candidate transfor-
very little change in their roll and pitch angle. Accordingl

mations and calculate a score (likelihood) for edeke T},

they do not need the rotational invariance around the normalge 1ing the confidence of the transformation given a model
vector for the features. The same is the case if the robot our sensor. Recall that we use 3D range data, i.e., each

equipped with an IMU. This can reduce the computation easurement is a set of 3D points. This enables us to

complexity of the problem sin'ce the feature matching V‘(iﬂévaluate the candidate transformatifron a point-by-point
one degree of freedom less is more rpbust. A comparnsflsis (i.e., we assume the points are mutually independent)
between the two modes can be found in Section IV-B. Let P be a set ofvalidation pointsfrom the query scan

C. Bag of Words z*. This setP could contain all points from* but we will

W BowW h ¢ initial hod only use a representative subsetbfas describgd atAthe end
e use a BoW approach as a fast Initial method 10 pres s section. Given a candidate transformatioe 7}, we

order the scans according to their similarity to the givem i - 0ct0rm each € P in the reference frame af into a
« .
query scanz*. BoW approaches are based on the 'deBointp’ in the reference frame af;,. Since we represent our

ghat _Z'm.'lar str?itures In a_lr_1henV|ronent W'ltl) create samil slcans as range images, we can calculate the pixel position
istributions of features. The goal is to obtain a genera,(%y) in the range image of;, in which the pointy’ would

representation for those feature distributions. We want Il into as well as the range valué the point should have.
e_nc_ode each scan In terms of a small set of words (the, pr(x,y) € 2, be the point that is already at this pixel
e e o J18b8%_ postion (n e range image o) havng the range value
database of size, this leads ton - 2000 feature descriptors ;’f((x’)ye)'[g olr] :ﬁghg vfeight\;v? (V\;"Lnoomf:ﬁ;ﬁgitﬁoa ;gg;e
(each of size36). We then apply k-means clustering to Obtaintr?eppredic’tionr’ is explaineg gy the observation, (z, ).

a total of200 clusters. Our dictionary is now made 200 The point scores will then be used to calculate thé overall

words, each being the averaged descriptor of its cluster. V}{Eelihood s(T) for the transformatioW” by:
found that this size provides a reasonable trade-off batwee '

being able to generalize and being descriptive enough.rGive S(F) = >_vpep Wi (p) - 57(p) )
this dictionary, we can now express each seare D in dvpepWp(P)




Let Ar = rg(xz,y) — r' be the difference between the weight w4 (p) = Wiarange > 1.

observed and the predicted range. To evalurtewe have  To avoid that slight errors in the estimate of a correct
to consider the model of the sensor. In the case of a lasgansformation lead to a very small score, e.g., if the point
scanner, a pulse of light moves from the sensor's origifies on an obstacle border and we hit the much further away
along a line to the measured point (each range image pixghighbor instead, we actually consider not opliz, y) as a
represents one such beam). There are several differers caggrrespondence fqr, but also its neighbors in a small pixel
needed to be considered regarding the interpretatioiof  yadjuse € N (3 in our experiments) around it and select the

1) The observation is within a confidence intervalpoint with the least negative influence on the complete score
Arpmax > 0 of the prediction, i.e.]Ar| < Arpax. In Until now we did not say, how the set of validation
other words, what we expected to see mostly fits witipoints P, from which we selecp, is obtained. In principle
what we measured. In this case, we calculate the scatecould contain all the points from*. However, this would
assp(p) =1— A‘fr:lx and weight it byw;(p) = 1, lead to a high number of points to be tested and thus would
which represents a triangular distribution. While abe computationally expensive. We therefore use only a $ubse
Gaussian would be a more realistic representation, wa z*. A random subset of a fixed size could be used, but it
chose a triangular distribution, since it is less expensivis better to select points that have some significance in the
to compute. scene, or two scans could get a high score, just because
All the other cases will receive a scoee.(p) = 0. the floor or a big wall is well aligned. Furthermore, the
Thus, the associated weight;(p) reflects the confi- points should be evenly distributed over the scan in 3D
dence about howrong the transformatiorf” is. space to be invariant regarding the non-uniform resolution

2) The observed range is larger than the predicted onef 3D scans. To achieve this, we use the set of key-pdits
i.e., Ar > Arp.e. This means that we actually (i.e., the points where the NARF’s are) that we calculated in
observed something behing and basically looked the feature extraction process as a base to create the set of
through it. This could be the evidence for a dynamiealidation points. We add a random point frafhto P and
or partially transparent obstacle, but in general it ighen iteratively add the poini; € P that has the highest 3D
a strong indicator for a wrong transformation. Wedistance to all points already iR, until a maximum size is
therefore penalize the overall likelihood by a highreachedZ00 points in our current implementation). This has
weight wr (p) = Wseernongn=> 1- the interesting property that each ordered subsgt - -, p;)

3) The observed range is smaller than the predicted rang¥ the ordered seP = (po, - - -, pp|) is @ subsampled version
i.e., Ar < —Arpmax. In this case, there are two more of P with mostly equidistant points for every. This also
situations to distinguish: means that one can stop the calculations@F) (see Eq. 1)

a) T~ - py(z,y) exists inz*. This means that we before handl_ing e_a_ch point iR if the score is already to low
could not seep’ in %, because of an already after a certain minimum of handled points(points in our
known obstacle. In this case we give a low weighgXPeriments), since this subset already represents thiewho

W (D) = Winammonsnee < 1 iN OFder to enable us to Set quite well. . o
receive relatively high scores even if the overlap Since the score(T’) for the transformatioff” is not neces-

between scans is low. sarily the same as faF—! (by switching the role o™ with
b) 71 - pu(z,y) does not exist inz*. This could 2«). We adapt the scoring tg(T') = min(s(7), s(I")) as

be evidence for a formerly unseen or dynamiéhe score for the paitz*, 2;,) with transformation?’.
obstacle, but in general it is a strong indicatorr Self-Similarity

for a wrong transformation. Similar to case 2 .
) . . ) ' Th h I I ly f
we penalize this by a high weight,(p) — ere are scans that qualify only poorly for the pose

estimation process because of a high self-similarity,, e.g.
Wanknomobsace” 1 corridors with very few distinctive structure. To prevealsie
4) pr(z,y) is an unobserved point in the range image opositives (false transformations getting a high scorehose
Z,. This means thap’ could not be observed becausegreas, we calculate a self-similarity score for every scan.
it is outside of the scan. We treat this the same as 3ape do this by matching the scanagainst itself, using the
5) ri(z,y) is a far range reading (i.e., exceeding the mayrocedure described above and consider only transfornsatio
range of the sensor) in the range imagezpf There  that are not close to the identity matrix. We call the highest
are two more situations to distinguish, for which wescore in this setself(z) and consider it as a measure for
need to consider the original rangeof p in 2*: self similarity. We then adapt the scoring and obtain the
a) The point should actually be closer to the sensdinal score for a transformation betweet and z; in the
in 2, i.e., 7’ < r. In this case it is improbable following way: s*(7") = (1—(self (z*)+self (3x))/2)-s'(T).
thatp’ is out of range and therefore we treat thisRecall that we perform the steps described so far for each
the same as case 2. candidate transformatioi’ € 7}.. If the best score out of
b) The point moved further away from the sensor irall candidates is above a thresholg,represents a potential
2, i.e,, 7" > r. In this case it is possible that loop closure, i.e.C'(z*) := C(2*) U (2, Tk, s,y With T, =
moved out of range and we give a medium highargmax . 7. s*(T) and s, = s*(T}).




G. Implementation details in [10]. Please refer to Figure 3 for more information about

We perform some additional steps to improve the resultée datasets.

After an initial scoring of the candidate transformations f N all experiments we Uset.cermougn= 25, Winunosiase= 0.5,

a scan pair(z*, %,) we first remove transformations with @niomossiace= 15, @Nd Werrarge = 5 as the parameters for the
a very low score. We then cluster the transformations argforing function (as defined in Section IlI-E).

identify those describing very similar relative poses,irg B
only the best ones in the candidate list. Next, we perform ICP ) .
to improve the transformation estimate, using only the get g We calculated the confusion matrices for the datasets
validation points to speed up this step. Finally, we updat€€ Figure 4(a)) by matching each scan with every scan

the scores given the corrected transformations and refiern ¢ the database and returning the score of the best found
transformation associated with the highest score as thit.res transformation. The dark areas that are not close to the main

diagonal mark loop closures. Here the system was able to
IV. EXPERIMENTS match scans from different points in time where the robot

In this section, we present the real-world experiment¥iSited a previously visited area (see also Figure 3).
carried out to evaluate our approach. We used four publicly To evaluate if a match is a false positive, we compared
available datasets of 3D scans, namely two outdoor dataséi§ ground truth transformation between the scans with our
and two indoor dataset. In the following we will give anfound transformation and check if it exceeds an error value.
overview over these datasets and their specific challenged’/ease note that this is a harder condition than used irecelat

work [15], [9], where no relative pose is estimated and only

A. Datasets the distance between the scans is considered.

The following datasets were used in our experiments:  Figure 4(b) gives an overview over the number of true

« For the first indoor dataset we choA@SS-loop* [1]. positives and false negatives and the resulting recallaste
This dataset was also used in the related work [8], [L5P function of the distance between scans, using the minimum
which makes a comparison easier. Its main challenge acceptance threshold for which no false positive was found.
that it contains some highly ambiguous areas in long Figure 4(c) plots the number of false positives as a func-
corridors. ?IOH of the acceptance threshold. The recall rate for a man-

« For the second indoor dataset we captured 3D scaHg!ly set maximum distance between scans is also shown.
with a flying Quadrotor robot, equipped with a 2D  For AASS-loop we used.0m as the distance to consider

laser scanner [10]. This dataset [4] is challenging beWo Scans a match (this is the same as in previous work [15],
cause of a higher noise level and the existence &9]1). The minimum acceptance threshold for which we re-

highly similar scans from different poses in a corridorc€ived no false positive i@.0_9. Above this value we have a
environment. recall rate 0f0.938. The equivalent values for the Quadrotor
« For the first outdoor dataset we choBeeiburgCam- dataset ar@.0m / 0.25 / 0.75, for FreiburgCampus368D
pus36Q3D [2]. We already used this dataset in Our1O.Om/_0.05/0.958, and for Hanover3.0m /0.19 / 0.925
prior work on place recognition [16]. It contains highespectively. . _
resolution, 360° scans and its main challenge is the Our evaluations do not include the diagonal elements of
large distance between consecutive scans, stressing thg confusion matrices (where the scans are matched against
system’s ability for translational invariance. themselves). Since Granstn and Sctin [9] used a machine
« For the second outdoor dataset we chidaaover2? [3]. learning algorithm based on boosting they had to split their
This dataset was also used in previous work [8], [15]gataset into learning and test sets for the cross validatioh
[16], which makes a comparison easier. This is a chatherefore did not evaluate the complete confusion matrix at
lenging dataset, since it contains a high number of vergnce. They reported rates 653 + 0.14 (min 0, max0.88)

sparse scans and the robot traverses different areas wi@h the AASS-loop dataset an@63 + 0.6 (min 0.28, max
very similar structure. 0.76) for the Hanover2 dataset.

All datasets apart from the Quadrotor dataset were recordedMagpussoret al.[15] evaluated their system in a SLAM
with 2D laser scanners mounted on panftilt units. We acrenano, where only scans th_at are at least 30 scans apart
quired SLAM trajectories using the provided odometry and'® evaluated. In this scenario they gor as the recall

manually verified scan matching as edges in the graph SLARR® for AASS and).47 for Hanover2, respectively at 100%

. ; recision. With the same setting we gb{0.08 acceptance
systemg?o [13]. These trajectories were used to evaluat
false/true positives and false/true negatives in our syste t reghold) fozr AASS and.911 (0.19 acceptance threshold)
the Quadrotor dataset the helicopter occasionally can)turéor anovere.

hovering around the same spot. Here, the trajectory was es-

timated using the quadrotor’s navigation system as destrib The values given so_far are the results we receive, when
we do not restrict the time requirements of our system.

1Courtesy of Martin Magnusson, AASSrebro University, Sweden . For the AASS'|OOP dataset it _tak(_es 881_ms to extract
2Courtesy of Oliver Wulf, Leibniz University, Germany interest points, features and validation points per scah an
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stop&go | #scans| #points | #farRanges| res traj dist | p—range | maxRange

AASS yes 60 80873 n/a 0.7 1114m | 1.89m| 2.81m 67.1m
Quadrotor no 23 171608 95515 1. 79.1m | 3.6m 1.9m 6.1m
Freiburg yes 77 155562 56451 0.45 723m | 951m| 89m 50m
Hanover no 923 12959 3622 1.3 | 1247.8m| 1.35m| 7.18m 29m

Fig. 3. Top: SLAM trajectories and ground truth confusion matrices foe tised datasets. For the indoor datasets the trajectorpti®glon a 2D
projected laser map and for the outdoor datasets it is odedaia Google Earth aerial image. The gray values in the canfusiatrices represent the
amount of overlap between the scans given the true relatige. Bottom: Overview over the properties of the used datasstgp&go=scans captured in
stop and go fashior{scansnumber of scangfpoints=average number of points per scafiarRanges-average number of far range readings per scan,
res=usable angular resolution for range imadesj, =trajectory lengthdist=average distance between consecutive sgansange=average measured range
value, maxRange=maximum range value

585 ms to match a scan against the database, meadfintgs Please note that we used the Freiburg dataset to learn the
for each scan pair. The equivalent values for the Quadrotdictionary for the BoW approach. Therefore this result (see
dataset ar&05ms, 102ms, and4 ms, for the FreiburgCam- Figure 4(d)) might be overconfident.

pus36Q3D datasetl 107 ms, 838 ms, andl1 ms, and for the
Hanover2 datase}l 6 ms,4132 ms, andi ms respectively. All .
experiments were performed using an Intel 17 quad-core PC. N this paper we presented a robust approach to 3D place

When using the BoW approach, there is an additione{FCOgnition that simgltaneously computes relative pose es
overhead for the creation of the histograms (includinguieat mates between the involved 3D range scans. Our approach

extraction), which is894ms for AASS-loop, 276ms for is computationally more efficient compared to our previous

Quadrotor,730 ms for FreiburgCampus36860, and246 ms work while still receiving recall rates that compare favmya
for Hanovérz ' to alternative approaches. Additionally, the applicatbithe

recently developed normal-aligned radial features erhide
Using the BoW pre-ordering of the potential correspon y ’ 9

. . ; fo overcome the limitations regarding rotational invacan
ing scans, we can define a timeout for the database que

O our former approach. We also presented a novel sensor

Please refer to Figure 4(d) for an overview, how the Chodel. A carefully carried out evaluation revealed that our

call rates (for the respective minimum acceptance thrdsholl]eW approach yields a more robust scoring of relative pose
and maximum scan distance) evolve for increasing timeo%tstimates

values. It can be seen that the additional overhead for

the histogram calculation is only justifiable for the bigges ACKNOWLEDGMENTS

dataset, namely Hanover2. Here, a recall rate of close toThis work has partly been supported by the European
80% can already be reached after one second per datab@sgnmission under contract number FP7-231888-EUROPA.
query. In the same plots there is also a comparison betwegfe wish to thank Giorgio Grisetti for his valuable input and
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V. CONCLUSIONS



100

200

300

400

500

600

700

800

900

true positives
false negatives——/" |
recall rate- - - -/

H
fes}
g 8
T
u (o2} ~ o]
o o o o
7? o o. O
alse negatives

Recall rate in %
B [}
o o

w S

o o

S S

of true positives,

1 200,

N
o
=
15)
=]
0.

0

o 2 4 6. 8 10
Maximum distance to neighbor scans in m

2009
=
1805
=2
4 1602
1 1408
112
1 1002
17
1808
{602
T4 406
1202
0

true positives

false negatives—— /
recall rate- - - -

=
o
s}

Recall rate in %
D o]
o o

esttal

N
o

N
o

0

0 1 2 3 4 5
Maximum distance to neighbor scans in m

T 700

true positives
false negatives——
recall rate- - - - -

=
1S)
=]

7 600

egatives

c
4 5009

Recall rate in %
Sy D o)
o o o
N w B
8 8.8
No. of true positives/fals

=
o
S

L L R ) 0

0 5 10 15 20 25 30 35 40
Maximum distance to neighbor scans in m
T 1 —— 600008
\ true positives >
= \\ e 100 false negatives—— ©
. 08 recall rate- - - - - 50000
L 1 c
\\ £ 80 & =
L % - 2 400008 ¢
L \ I o g 2 @
N ©60 300002 £
= 7 =
| N Hoe § /- g 8
IS N d &40 S 200008 &
\ - 5
r N (M., 2 10000
L W S
N 0 0

0 100 200 300 400 500 600 700 800 900

0 5 0 15 20
Maximum distance to neighbor scans in m

() (b)

o o B
o o o

Recall rate in %
S
o

false positives: recall rate
L| recall rate- - - - - 100 recall rate rot. inv.
u:
15% 2 80
@ £
2 o
108 g 60
S 3
5 840
s
502
20
0 0
0 02 04 06 0.8 1 0.1 0.2 0.3 04 05
Minimal score to consider two scans a match Maximum time to match a scanins
200 T y T
false positives: recall rate
recall rate- - - - - 100 recall rate rot. inv.
u
B8 g4
@ £
2 o
0@ £60
S g
5 8
> x40
f=}
502
20
0 0

(1] 0.2 0.4 0.6 0.8 1
inimal score to consider two scans a match

N
=]
=]

0 02 04 06 0.8 1
inimal score to consider two scans a match

0 0.1 0.2 0.3 04 05
Maximum time to match a scan in's
T U T 200 T T T
false positives: recall rate
recall rate- - - - - 100 recall rate rot. inv.
o
1
5% a0l
2 £
2 g
108 g 60
g 37
5 840l
s «
502
20
Y 0

05 1 15 2
Maximum time to match a scanin s

©
o

)
o

N
o

N
o

200
false positives: recall rate
recall rate- - - - - 100 recall rate rot. inv.
m
15% 80}
@ £ —
g8 9 _—
108 ,_‘E 60
S 3
5 Zaof
s
502
20
0 0

0 02 04 06 0.8 1
Minimal score to consider two scans a match

0 1 2 3 4 .5
Maximum time to match a scanin s

(c) (d)

Fig. 4. First row: Results AASS-loosecond rowResults Quadrotor hird row : Results FreiburgCampus3&D Fourth row: Results Hanover2

(a): Confusion matrices created by our systdim: The number of true positives, false negatives, and the tiegulecall rate for different maximum
distances between scans to consider them overlapping.eBeagy for the minimum acceptance threshold that did natrretany false positivegc):
Number of false positives and the recall rate for differentimim scores. The recall rate is determined regarding a maximatargie ofl.0m /2.0m
/10.0m / 3.0m (from top to bottom) between the scafd): The recall rate dependent on the maximum time the system hastth ma&can against the
database, using the BoW approach. The two graphs représenedall rate with and without the rotational invarianceha NARFs.
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